cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164599 a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.

Original entry on oeis.org

1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164598. Seventh binomial transform of A164587. Inverse binomial transform of A081185 without initial term 0.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), this sequence (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164599_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-14*x+47*x^2) ).list()
    A164599_list(30) # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1+x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147958(n) + 8*A081184(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)