A164599 a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.
1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (14,-47).
Crossrefs
Programs
-
Magma
[ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
-
Maple
m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
Mathematica
LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
PARI
my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
-
Sage
def A164599_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)/(1-14*x+47*x^2) ).list() A164599_list(30) # G. C. Greubel, Mar 11 2021
Formula
a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1+x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)
Comments