A164617 Expansion of (phi^3(q^3) / phi(q)) * (psi(-q^3) / psi^3(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
1, 1, 4, 10, 20, 39, 76, 140, 244, 415, 696, 1140, 1820, 2861, 4448, 6816, 10292, 15372, 22756, 33356, 48408, 69683, 99600, 141312, 199036, 278557, 387608, 536230, 737632, 1009464, 1374888, 1863764, 2514868, 3378948, 4521672, 6027000, 8002676
Offset: 0
Keywords
Examples
G.f. = 1 + q + 4*q^2 + 10*q^3 + 20*q^4 + 39*q^5 + 76*q^6 + 140*q^7 + 244*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[(1-x^(6*k))^14 / ((1-x^k) * (1-x^(2*k))^2 * (1-x^(3*k))^5 * (1-x^(4*k)) * (1-x^(12*k))^5),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^14 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^3 + A)^5 * eta(x^4 + A) * eta(x^12 + A)^5), n))};
Formula
Expansion of eta(q^6)^14 / (eta(q) * eta(q^2)^2 * eta(q^3)^5 * eta(q^4) * eta(q^12)^5) in powers of q.
Euler transform of period 12 sequence [ 1, 3, 6, 4, 1, -6, 1, 4, 6, 3, 1, 0, ...].
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
A128641(n) = (-1)^n*a(n). - Michael Somos, Apr 24 2023
Comments