A164625 Primes p such that p+floor(p/2)+floor(p/3)+floor(p/5) is also prime.
2, 3, 7, 19, 83, 89, 127, 137, 139, 181, 251, 257, 311, 317, 373, 379, 449, 491, 499, 503, 509, 673, 733, 797, 853, 857, 863, 919, 971, 983, 1033, 1039, 1049, 1093, 1151, 1201, 1217, 1399, 1453, 1579, 1583, 1627, 1697, 1741, 1871, 1933, 1993, 2129, 2237, 2281
Offset: 1
Examples
For p=7, 7+3+2+1=13 is prime, which admits 7=a(4) to the sequence. For p=19, 19+9+6+3=37 is prime, which puts 19=a(5) into the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p+Floor[p/2]+Floor[p/3]+Floor[p/5]],AppendTo[lst, p]],{n,2*6!}];lst Select[Prime[Range[350]],PrimeQ[Total[Floor[#/{2,3,5}]]+#]&] (* Harvey P. Dale, Feb 19 2012 *)
Extensions
Comments rephrased as examples by R. J. Mathar, Aug 20 2009