A164667 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
1, 31, 930, 27900, 837000, 25110000, 753300000, 22598999535, 677969972100, 20339098744965, 610172949807900, 18305188118005500, 549155632253220000, 16474668628988250000, 494240048711397215760, 14827201156594414216125
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..670
- Index entries for linear recurrences with constant coefficients, signature (29,29,29,29,29,29,-435).
Programs
-
GAP
a:=[31, 930, 27900, 837000, 25110000, 753300000, 22598999535];; for n in [8..20] do a[n]:=29*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -435*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8) )); // G. C. Greubel, Sep 15 2019 -
Maple
seq(coeff(series((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 15 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *) coxG[{7, 435, -29}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)) \\ G. C. Greubel, Sep 15 2019
-
Sage
def A164667_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)).list() A164667_list(20) # G. C. Greubel, Sep 15 2019
Formula
G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
Comments