A164680 Expansion of x/((1-x)^3*(1-x^2)^3*(1-x^3)).
1, 3, 9, 20, 42, 78, 139, 231, 372, 573, 861, 1254, 1791, 2499, 3432, 4629, 6162, 8085, 10492, 13455, 17094, 21503, 26832, 33201, 40795, 49764, 60333, 72687, 87096, 103785, 123075, 145236, 170646, 199626, 232617, 269997, 312277, 359898, 413448, 473438
Offset: 1
Examples
To calculate a(3), we consider the first three terms of A001399 = (1 1 2...) and the first three terms of A006918 = (1 2 5 ...), to get the convolved a(3) = 1*5+1*2+2*1 = 9.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^3*(1-x^2)^3*(1-x^3)) )); // G. C. Greubel, Jan 13 2020 -
Maple
seq(coeff(series(x/((1-x)^3*(1-x^2)^3*(1-x^3)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Jan 13 2020
-
Mathematica
Rest@CoefficientList[Series[x/((1-x)^3*(1-x^2)^3*(1-x^3)), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *) LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{1,3,9,20,42,78,139,231,372,573,861,1254},40] (* Harvey P. Dale, Aug 03 2025 *)
-
PARI
Vec(1/(1-x)^3/(1-x^2)^3/(1-x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 23 2012
-
Sage
x=PowerSeriesRing(QQ, 'x', 40).gen() 1/((1-x)^3*(1-x^2)^3*(1-x^3))
Formula
a(n) = round( -(-1)^n*(n+3)*(n+7)/256 +(6*n^6 +180*n^5 +2070*n^4 +11400*n^3 +30429*n^2 +34290*n +9785)/103680 ) - R. J. Mathar, Mar 19 2012
Extensions
Edited and extended by R. J. Mathar, Aug 22 2009
Corrected link to index entries - R. J. Mathar, Aug 26 2009
Comments