cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164771 Numbers k such that the average digit of k^2 is 1.

Original entry on oeis.org

1, 1049, 1490, 10002, 10005, 10011, 10020, 10050, 10101, 10110, 10149, 10200, 10500, 11001, 11010, 11100, 11490, 12000, 14499, 15000, 17610, 18000, 20001, 20010, 20100, 21000, 24900, 30000, 33200, 35000, 36100, 44900, 44990, 45100
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Comments

There are 117 such n's < 10^7: 1, 1049, 1490, 10002, 10005, 10011, 10020, 10050, 10101, 10110, 10149, 10200, 10500, 11001, 11010, 11100, 11490, 12000, 14499, 15000, 17610, 18000, 20001, 20010, 20100, 21000, 24900, 30000, 33200, 35000, 36100, 44900, 44990, 45100, 46000, 54800, 55000, 64900, 71000, 80000, 1000006, 1000015, 1000051, 1000055, 1000060, 1000105, 1000150, 1000501, 1000510, 1000550, 1000600, 1001005, 1001050, 1001500, 1005001, 1005010, 1005100, 1005500, 1006000, 1006490, 1009951, 1010005, 1010050, 1010149, 1010500, 1011490, 1015000, 1024900, 1050001, 1050010, 1050100, 1051000, 1055000, 1060000, 1064900, 1095500, 1096000, 1100005, 1100050, 1100500, 1105000, 1114900, 1145000, 1150000, 1190000, 1224749, 1244990, 1249000, 1414249, 1415000, 1420000, 1424900, 1429000, 1451000, 1460000, 1484251, 1500001, 1500010, 1500100, 1501000, 1510000, 1550000, 1600000, 1735000, 1739000, 1789000, 1820000, 2000005, 2000050, 2000500, 2005000, 2050000, 2239000, 2261000, 2450000, 2500000, 2900000.
Or: Numbers k such that k^2 is in A061384, i.e., square root of squares in A061384. - M. F. Hasler, Dec 05 2010

Examples

			1049 is a term because 1049^2 = 1100401 and (1 + 1 + 0 + 0 + 4 + 0 + 1)/7 = 1.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • Mathematica
    Select[Range[50000],Mean[IntegerDigits[#^2]]==1&] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    {for(d=1,9, for(n=sqrtint(10^(d-1)-1)+1, sqrtint(10^d-1), my(n2=divrem(n^2,10)); sum( k=2,d, (n2=divrem(n2[1],10))[2],n2[2])/d==1 & print1(n",")))}  \\ M. F. Hasler, Dec 05 2010

Formula

A055642(a(n)^2) = A007953(a(n)^2). - M. F. Hasler, Dec 05 2010

Extensions

Terms up to a(117) checked with given PARI code by M. F. Hasler, Dec 05 2010