A165346 Numbers such that the sum of the distinct prime factors is a fourth power.
1, 39, 55, 66, 117, 132, 158, 198, 264, 275, 316, 351, 396, 507, 528, 594, 605, 632, 726, 792, 1053, 1056, 1095, 1188, 1255, 1264, 1375, 1452, 1491, 1506, 1521, 1584, 1782, 2112, 2130, 2178, 2211, 2376, 2528, 2904, 3012, 3025, 3111, 3159, 3168, 3285, 3363
Offset: 1
Keywords
Examples
a(2) = 39, because 39 = 3*13, and 3+13 = 16 = 2^4. a(7) = 158, because 158 = 2*79, and 2+79 = 81 = 3^4.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5000
Programs
-
Maple
A008472 := proc(n) add( p, p = numtheory[factorset](n)) ; end: isA000583 := proc(n) iroot(n,4,'exct') ; exct ; end: A165346 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA000583(A008472(a)) then RETURN(a); fi; od: fi; end: seq(A165346(n),n=1..80) ; # R. J. Mathar, Sep 20 2009
-
Mathematica
a165346[n_] := Select[Range@n, IntegerQ[Power[Plus @@ Transpose[FactorInteger[#]][[1]], 1/4]] &]; a165346[3400] (* Michael De Vlieger, Jan 06 2015 *)
-
PARI
isok(n) = my(f=factor(n)); ispower(vecsum(f[,1]),4); \\ Michel Marcus, Jan 06 2015
Extensions
More terms from R. J. Mathar, Sep 20 2009
Comments