cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164823 Irregular triangle read by rows, listing the values x for which T_k(x) == 1 (mod j) for j >= 2 and k = 1..j-1, where T_k are the Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 2, 4, 5, 1, 1, 2, 3, 4, 5, 1, 1, 1, 6, 1, 3, 1, 6, 1, 1, 3, 4, 6, 1, 1, 3, 5, 7, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 3, 5, 7, 1, 1, 1, 8, 1, 4, 7, 1, 3, 6, 8, 1, 1, 2, 4, 5, 7, 8, 1, 1, 3, 6, 8, 1, 1, 4, 6, 9, 1, 7, 1, 4, 5, 6, 9, 1, 1, 2, 3, 4, 6, 7, 8, 9, 1, 1, 4, 5
Offset: 1

Views

Author

Keywords

Examples

			The values are listed horizontally in increasing order for each (j, k) under the column headed "cos(2*Pi/k) mod j".
The column headed "nov" is the number of values. The values read downwards form A164822.
I call "cos(x) mod j" the "Discrete Cosine of x modulo j".
cos(2*Pi/k) mod j can be calculated by expressing cos(2*Pi) as a polynomial P in cos(2*Pi/k), for which the coefficients are those of Chebyshev's T(n,x) polynomials (A053120), and then solving P - 1 == 0 (mod j) by trial and error.
...j.......k.....nov....cos(2*Pi/k).mod.j
...2.......1.......1.......1
...3.......1.......1.......1
...........2.......2.......1.......2
...4.......1.......1.......1
...........2.......2.......1.......3
...........3.......1.......1
...5.......1.......1.......1
...........2.......2.......1.......4
...........3.......2.......1.......2
...........4.......2.......1.......4
...6.......1.......1.......1
...........2.......4.......1.......2.......4.......5
...........3.......1.......1
...........4.......5.......1.......2.......3.......4.......5
...........5.......1.......1
...7.......1.......1.......1
...........2.......2.......1.......6
...........3.......2.......1.......3
...........4.......2.......1.......6
...........5.......1.......1
...........6.......4.......1.......3.......4.......6
...8.......1.......1.......1
...........2.......4.......1.......3.......5.......7
...........3.......1.......1
...........4.......7.......1.......2.......3.......4.......5.......6.......7
...........5.......1.......1
...........6.......4.......1.......3.......5.......7
...........7.......1.......1
...9.......1.......1.......1
...........2.......2.......1.......8
...........3.......3.......1.......4.......7
...........4.......4.......1.......3.......6.......8
...........5.......1.......1
...........6.......6.......1.......2.......4.......5.......7.......8
...........7.......1.......1
...........8.......4.......1.......3.......6.......8
..10.......1.......1.......1
...........2.......4.......1.......4.......6.......9
...........3.......2.......1.......7
...........4.......5.......1.......4.......5.......6.......9
...........5.......1.......1
...........6.......8.......1.......2.......3.......4.......6.......7.......8.......9
...........7.......1.......1
...........8.......5.......1.......4.......5.......6.......9
...........9.......2.......1.......7
..11.......1.......1.......1
...........2.......2.......1......10
...........3.......2.......1.......5
...........4.......2.......1......10
...........5.......3.......1.......7.......9
...........6.......4.......1.......5.......6......10
...........7.......1.......1
...........8.......2.......1......10
...........9.......2.......1.......5
..........10.......6.......1.......2.......4.......7.......9......10
		

Crossrefs

Programs

  • Maple
    seq(seq(seq(`if`(orthopoly[T](k,t)-1 mod j = 0, t,NULL),t=1..j-1),k=1..j-1),j=2..20); # Robert Israel, Apr 06 2015

Extensions

Sequence corrected by Christopher Hunt Gribble, Sep 10 2009
Minor edit by N. J. A. Sloane, Sep 13 2009
Minor edit by Christopher Hunt Gribble, Oct 01 2009

A165252 Triangle read by rows: Frequency with which the values of cos(2*Pi/k) mod j, listed in A164823, occur for each j >= 1, taken over k = 1..j-1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 1, 0, 2, 0, 5, 2, 1, 2, 2, 0, 6, 0, 2, 1, 0, 3, 0, 7, 1, 3, 1, 3, 1, 3, 0, 8, 1, 2, 2, 1, 2, 2, 4, 0, 9, 1, 1, 4, 2, 4, 3, 1, 4, 0, 10, 1, 0, 1, 3, 1, 2, 0, 2, 5
Offset: 1

Views

Author

Keywords

Comments

The FORTRAN program used to generate this sequence is too complex to be listed here.

Examples

			The triangle of numbers is:
..j....Frequency of values over k
.......0..1..2..3..4..5..6..7..8..9..10
..1....0
..2....0..1
..3....0..2..1
..4....0..3..0..1
..5....0..4..1..0..2
..6....0..5..2..1..2..2
..7....0..6..0..2..1..0..3
..8....0..7..1..3..1..3..1..3
..9....0..8..1..2..2..1..2..2..4
.10....0..9..1..1..4..2..4..3..1..4
.11....0.10..1..0..1..3..1..2..0..2..5
		

Crossrefs

A164822 Triangle read by rows, giving the number of solutions mod j of T_k(x) = 1, for j >= 2 and k = 1:j-1, where T_k is the k'th Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 4, 1, 5, 1, 1, 2, 2, 2, 1, 4, 1, 4, 1, 7, 1, 4, 1, 1, 2, 3, 4, 1, 6, 1, 4, 1, 4, 2, 5, 1, 8, 1, 5, 2, 1, 2, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 11, 1, 4, 1, 11, 1, 4, 1, 1, 2, 2, 2, 1, 4, 4, 2, 2, 2, 1, 6, 1, 4, 2, 5, 1, 8, 1, 9, 2, 4, 1, 9, 1, 1, 4, 2, 8, 1, 8, 1, 8, 2, 4, 1, 14, 1
Offset: 1

Views

Author

Keywords

Comments

T_k(0) = 1 if k == 0 mod 4, but x=0 is not counted as a solution. - Robert Israel, Apr 06 2015

Examples

			The triangle of numbers is:
.....k..1..2..3..4..5..6..7..8..9.10
..j..
..2.....1
..3.....1..2
..4.....1..2..1
..5.....1..2..2..2
..6.....1..4..1..5..1
..7.....1..2..2..2..1..4
..8.....1..4..1..7..1..4..1
..9.....1..2..3..4..1..6..1..4
.10.....1..4..2..5..1..8..1..5..2
.11.....1..2..2..2..3..4..1..2..2..6
		

Crossrefs

Programs

  • Maple
    seq(seq(nops(select(t -> orthopoly[T](k, t)-1 mod j = 0, [$1..j-1])), k=1..j-1), j=2..20); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[Length[Select[Range[j-1], Mod[ChebyshevT[k, #]-1, j] == 0&]], {j, 2, 20}, {k, 1, j-1}] // Flatten (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)

Formula

From Robert Israel, Apr 06 2015 (Start):
a(k,j) is multiplicative in j for each odd k.
a(k,j)+1 is multiplicative in j for k divisible by 4.
a(k,j)+[j=2] is multiplicative in j for k == 2 mod 4, where [j=2] = 1 if j=2, 0 otherwise.
a(1,j) = 1.
a(2,j) = A060594(j) if j is odd, A060594(j/2) if j is even.
a(3,2^m) = 1.
a(3,p^m) = p^floor(m/2)+1 if p is a prime > 3.
a(4,p^m) = p^floor(m/2)+1 if p is a prime > 2.
a(5,p) = 3 if p is in A045468, 1 for other primes p. (End)

Extensions

Sequence and definition corrected by Christopher Hunt Gribble, Sep 10 2009
Minor edit by N. J. A. Sloane, Sep 13 2009

A164846 Triangle read by rows: frequency with which the number of values taken by cos(2*Pi/k) mod j occurs for each j >= 1, taken over k = 1..j-1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 3, 0, 0, 0, 3, 0, 0, 1, 1, 0, 2, 3, 0, 1, 0, 0, 0, 4, 0, 0, 2, 0, 0, 1, 0, 3, 1, 1, 2, 0, 1, 0, 0, 0, 3, 2, 0, 1, 2, 0, 0, 1, 0, 0, 2, 5, 1, 1, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 3, 6, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 2, 0, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

See A164823 for explanatory comment and the definition of "cos(x) mod j".

Examples

			The triangle of numbers is:
..j....Frequency of numbers of solutions over k
.......0..1..2..3..4..5..6..7..8..9..10
..1....0
..2....0..1
..3....0..1..1
..4....0..2..1..0
..5....0..1..3..0..0
..6....0..3..0..0..1..1
..7....0..2..3..0..1..0..0
..8....0..4..0..0..2..0..0..1
..9....0..3..1..1..2..0..1..0..0
.10....0..3..2..0..1..2..0..0..1..0
.11....0..2..5..1..1..0..1..0..0..0..0
		

Crossrefs

Extensions

Minor edits from N. J. A. Sloane, Sep 01 2009
Sequence corrected by Christopher Hunt Gribble, Sep 10 2009
Minor edits by Christopher Hunt Gribble, Oct 01 2009
Showing 1-4 of 4 results.