A164823 Irregular triangle read by rows, listing the values x for which T_k(x) == 1 (mod j) for j >= 2 and k = 1..j-1, where T_k are the Chebyshev polynomials of the first kind.
1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 2, 4, 5, 1, 1, 2, 3, 4, 5, 1, 1, 1, 6, 1, 3, 1, 6, 1, 1, 3, 4, 6, 1, 1, 3, 5, 7, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 3, 5, 7, 1, 1, 1, 8, 1, 4, 7, 1, 3, 6, 8, 1, 1, 2, 4, 5, 7, 8, 1, 1, 3, 6, 8, 1, 1, 4, 6, 9, 1, 7, 1, 4, 5, 6, 9, 1, 1, 2, 3, 4, 6, 7, 8, 9, 1, 1, 4, 5
Offset: 1
Examples
The values are listed horizontally in increasing order for each (j, k) under the column headed "cos(2*Pi/k) mod j". The column headed "nov" is the number of values. The values read downwards form A164822. I call "cos(x) mod j" the "Discrete Cosine of x modulo j". cos(2*Pi/k) mod j can be calculated by expressing cos(2*Pi) as a polynomial P in cos(2*Pi/k), for which the coefficients are those of Chebyshev's T(n,x) polynomials (A053120), and then solving P - 1 == 0 (mod j) by trial and error. ...j.......k.....nov....cos(2*Pi/k).mod.j ...2.......1.......1.......1 ...3.......1.......1.......1 ...........2.......2.......1.......2 ...4.......1.......1.......1 ...........2.......2.......1.......3 ...........3.......1.......1 ...5.......1.......1.......1 ...........2.......2.......1.......4 ...........3.......2.......1.......2 ...........4.......2.......1.......4 ...6.......1.......1.......1 ...........2.......4.......1.......2.......4.......5 ...........3.......1.......1 ...........4.......5.......1.......2.......3.......4.......5 ...........5.......1.......1 ...7.......1.......1.......1 ...........2.......2.......1.......6 ...........3.......2.......1.......3 ...........4.......2.......1.......6 ...........5.......1.......1 ...........6.......4.......1.......3.......4.......6 ...8.......1.......1.......1 ...........2.......4.......1.......3.......5.......7 ...........3.......1.......1 ...........4.......7.......1.......2.......3.......4.......5.......6.......7 ...........5.......1.......1 ...........6.......4.......1.......3.......5.......7 ...........7.......1.......1 ...9.......1.......1.......1 ...........2.......2.......1.......8 ...........3.......3.......1.......4.......7 ...........4.......4.......1.......3.......6.......8 ...........5.......1.......1 ...........6.......6.......1.......2.......4.......5.......7.......8 ...........7.......1.......1 ...........8.......4.......1.......3.......6.......8 ..10.......1.......1.......1 ...........2.......4.......1.......4.......6.......9 ...........3.......2.......1.......7 ...........4.......5.......1.......4.......5.......6.......9 ...........5.......1.......1 ...........6.......8.......1.......2.......3.......4.......6.......7.......8.......9 ...........7.......1.......1 ...........8.......5.......1.......4.......5.......6.......9 ...........9.......2.......1.......7 ..11.......1.......1.......1 ...........2.......2.......1......10 ...........3.......2.......1.......5 ...........4.......2.......1......10 ...........5.......3.......1.......7.......9 ...........6.......4.......1.......5.......6......10 ...........7.......1.......1 ...........8.......2.......1......10 ...........9.......2.......1.......5 ..........10.......6.......1.......2.......4.......7.......9......10
Links
- Christopher Hunt Gribble, Flattened irregular triangle, for j = 2..100 and k = 1..j-1.
Programs
-
Maple
seq(seq(seq(`if`(orthopoly[T](k,t)-1 mod j = 0, t,NULL),t=1..j-1),k=1..j-1),j=2..20); # Robert Israel, Apr 06 2015
Extensions
Sequence corrected by Christopher Hunt Gribble, Sep 10 2009
Minor edit by N. J. A. Sloane, Sep 13 2009
Minor edit by Christopher Hunt Gribble, Oct 01 2009
Comments