A164844 Generalized Pascal Triangle - satisfying the same recurrence as Pascal's triangle, but with a(n,0)=1 and a(n,n)=10^n (instead of both being 1).
1, 1, 10, 1, 11, 100, 1, 12, 111, 1000, 1, 13, 123, 1111, 10000, 1, 14, 136, 1234, 11111, 100000, 1, 15, 150, 1370, 12345, 111111, 1000000, 1, 16, 165, 1520, 13715, 123456, 1111111, 10000000, 1, 17, 181, 1685, 15235, 137171, 1234567, 11111111, 100000000, 1, 18, 198, 1866, 16920, 152406, 1371738, 12345678, 111111111, 1000000000, 1, 19, 216, 2064, 18786, 169326, 1524144, 13717416, 123456789, 1111111111, 10000000000
Offset: 0
Examples
Triangle begins: 1 1,10 1,11,100 1,12,111,1000 1,13,123,1111,10000 1,14,136,1234,11111,100000
Links
- Robert Israel, Table of n, a(n) for n = 0..10152 (rows 0 to 141, flattened)
Programs
-
Maple
f:= proc(n,k) option remember; if k=n then 10^n elif k=0 then 1 else procname(n-1,k-1)+procname(n-1,k) fi end proc: seq(seq(f(n,k),k=0..n),n=0..10); # Robert Israel, Jul 01 2016
-
Mathematica
f[r_, k_] := Sum[10^i*Binomial[r - i - 1, r - k - 1], {i, 0, k}]; TableForm[Table[f[n, k], {n, 0, 15}, {k, 0, n}]] (* Alex Meiburg, Aug 21 2010 *) a[n_, k_] := a[n, k] = Piecewise[{{0, k > n || k < 0}, {1, k == 0}, {10^n, k == n}}, a[n - 1, k - 1] + a[n - 1, k]]; TableForm[Table[a[n, k], {n, 0, 10}, {k, 0, n}]] (* Kellen Myers, Jan 24 2010 *)
Formula
From Kellen Myers, Jan 24 2010: (Start)
a(n,k) = Sum_{i = 0..k} 10^i * binomial(n-i-1, n-k-1), for 0<=k<=n.
a(n,0) = 1, a(n,n) = 10^n, a(n,k) = a(n-1,k-1)+a(n-1,k). (End)
T(n,k) = T(n-1,k)+11*T(n-1,k-1)-10*T(n-2,k-1)-10*T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=10, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. of triangle: g(x,y) = (1-xy)/((1-10xy)(1-x-xy)). - Robert Israel, Jul 01 2016
Extensions
Definition clarified, more terms, and revision of Meiburg's Mathematica code by Kellen Myers, Jan 24 2010
Comments