cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A164855 Generalized Lucas-Pascal triangle: (101*100^n,1).

Original entry on oeis.org

1, 101, 1, 10100, 102, 1, 1010000, 10202, 103, 1, 101000000, 1020202, 10305, 104, 1, 10100000000, 102020202, 1030507, 10409, 105, 1, 1010000000000, 10202020202, 103050709, 1040916, 10514, 106, 1, 101000000000000, 1020202020202
Offset: 0

Views

Author

Mark Dols, Aug 28 2009

Keywords

Examples

			Triangle begins:
1
101,1
10100,102,1
1010000,10202,103,1
101000000,1020202,10305,104,1
10100000000,102020202,1030507,10409,105,1
1010000000000,10202020202,103050709,1040916,10514,106,1
101000000000000,1020202020202,10305070911,104091625,1051430,10620,107,1
		

Crossrefs

Programs

  • Maple
    A164855 := proc(n,k)
        option remember;
        if n=k then
            1;
        elif k>n or k<0 then
            0;
        elif k = 0 then
            101*100^(n-1) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc:
    seq(seq(A164855(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 03 2016

Formula

T(0,0)=1, T(n+1,0)=101*100^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0Philippe Deléham, Dec 27 2013

Extensions

Initial 1 added by Philippe Deléham, Dec 27 2013

A164852 Diagonal sum of generalized Lucas-Pascal triangle;(11*10^n,1).

Original entry on oeis.org

1, 12, 13, 124, 137, 1251, 1388, 12539, 13927, 125466, 139393, 1254859, 1394252, 12549111, 13943363, 125492474, 139435837, 1254928311, 1394364148, 12549292459, 13943656607, 125492949066, 139436605673, 1254929554739, 1394366160412, 12549295715151
Offset: 1

Views

Author

Mark Dols, Aug 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,11,-10,-10},{1,12,13,124},40] (* Harvey P. Dale, Aug 05 2018 *)

Formula

G.f.: -x*(-1-11*x+10*x^2+11*x^3) / ( (10*x^2-1)*(x^2+x-1) ). - R. J. Mathar, Nov 03 2016

Extensions

More terms from Harvey P. Dale, Aug 05 2018

A179619 a(1)=1, a(n+1) = 10*a(n)+2*n-1.

Original entry on oeis.org

1, 13, 135, 1357, 13579, 135801, 1358023, 13580245, 135802467, 1358024689, 13580246911, 135802469133, 1358024691355, 13580246913577, 135802469135799, 1358024691358021, 13580246913580243, 135802469135802465, 1358024691358024687, 13580246913580246909
Offset: 1

Views

Author

Mark Dols, Jul 20 2010

Keywords

Comments

Third column of A164851. The repeating pattern corresponds to the decimal expansion of 11/81 = 0.13580246913580246...

Crossrefs

Cf. A164851.

Programs

  • Mathematica
    RecurrenceTable[{a[1] == 1, a[n] == 10 a[n - 1] + 2 n - 1}, a, {n,
    30}] (* or *) LinearRecurrence[{12,-21,10},{1,13,135},30] (* Harvey P. Dale, Aug 16 2012 *)
  • PARI
    Vec(-x*(x+1)/((x-1)^2*(10*x-1)) + O(x^30)) \\ Colin Barker, Oct 03 2015

Formula

a(1)=1, a(2)=13, a(3)=135, a(n) = 12*a(n-1)-21*a(n-2)+10*a(n-3). - Harvey P. Dale, Aug 16 2012
G.f.: -x*(x+1) / ((x-1)^2*(10*x-1)). - Colin Barker, Oct 03 2015
Showing 1-3 of 3 results.