A164896 Number of subsets (up to cyclic shifts) of the n-th roots of 1 with zero sum.
1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 19, 2, 21, 10, 36, 2, 94, 2, 117, 22, 189, 2, 618, 8, 633, 60, 1203, 2, 6069, 2, 4116, 190, 7713, 26, 35324, 2, 27597, 634, 59706, 2, 328835, 2, 190935, 2728, 364725, 2, 2435780, 20, 1579884, 7714, 2582061, 2, 21013770, 194, 9894294, 27598, 18512793, 2, 377367015, 2, 69273669, 104832, 134219796, 638, 1678410951
Offset: 1
Keywords
Examples
a(6) = 5 because these subsets add to zero: (left: as bitstring, right: subset) ...... (empty sum) ..1..1 0 3 .1.1.1 0 2 4 .11.11 0 1 3 4 111111 0 1 2 3 4 5 (all roots of unity)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..164
- Joerg Arndt, Matters Computational (The Fxtbook), section 18.4 "Sums of roots of unity that are zero", p. 383.
Formula
a(n) = A110981(n) + Sum_{d|n,dA001037(d) = A110981(n) + A000031(n) - A001037(n). - Max Alekseyev, Apr 08 2013
Extensions
a(32)-a(39) from Joerg Arndt, Jun 10 2011
Terms a(40) onward from Max Alekseyev, Apr 08 2013
Comments