A164918 The smallest starting prime which reaches prime(n) by repeated application of the map x->A060308(x).
2, 2, 2, 2, 11, 2, 17, 11, 2, 29, 17, 11, 41, 2, 47, 29, 59, 17, 67, 71, 11, 41, 2, 47, 97, 101, 29, 107, 109, 17, 127, 67, 137, 11, 149, 151, 41, 2, 167, 47, 179, 181, 191, 97, 197, 29, 107, 17, 227, 229, 233, 239, 241, 127, 67, 263, 269, 137, 11, 281, 283, 149, 307, 311, 41
Offset: 1
Keywords
Examples
The first four values are 2 because prime(1)=2, prime(2)=3, prime(3)=5 and prime(4)=7 are all in the prime chain starting at 2.
Links
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
Programs
-
Maple
A060308 := proc(n) prevprime(2*n+1) ; end: isA164368 := proc(p) local q ; q := nextprime(floor(p/2)) ; return (numtheory[pi](2*q) -numtheory[pi](p) >= 1); end proc: A164368 := proc(n) option remember; local a; if n = 1 then 2; else a := nextprime( procname(n-1)) ; while not isA164368(a) do a := nextprime(a) ; end do : RETURN(a) ; end if; end proc: A164918 := proc(n) local p, a, j, q, itr ; p := ithprime(n) ; a := 1000000000000000 ; for j from 1 do q := A164368(j) ; if q > p then break; end if; itr := 0 ; while q < p do q := A060308(q) ; itr := itr+1 ; end do; if q = p then return A164368(j) ; end if; end do: end proc: seq(A164918(n), n=1..120) ; # R. J. Mathar, Mar 12 2010
-
Mathematica
lp[n_] := NextPrime[2n, -1]; a[n_] := For[pn = Prime[n]; p = 2, p <= pn, p = NextPrime[p], nwl = NestWhileList[lp, p, # <= Prime[n]&]; If[MemberQ[nwl, pn], Return[p]]]; Array[a, 120] (* Jean-François Alcover, Dec 01 2017 *)
Extensions
Edited and extended by R. J. Mathar, Mar 12 2010
Comments