A164929 Sum of odd prime divisors of numbers with all odd prime divisors of the form 6k+1.
7, 13, 7, 19, 13, 7, 31, 37, 19, 43, 7, 13, 7, 61, 31, 67, 73, 37, 19, 79, 43, 20, 97, 7, 103, 13, 109, 7, 61, 31, 127, 26, 67, 139, 73, 37, 151, 19, 157, 79, 163, 13, 43, 181, 20, 193, 97, 7, 199, 103, 13, 211, 38, 109, 223, 7, 229, 241, 61, 32, 31, 127, 44, 26, 67, 271, 277
Offset: 1
Examples
a(22) = 20 because b(22) = 91 = 7*13, and 7+13 = 20. The smallest number, all of whose prime factors are of form 6k+1, whose sum of distinct prime factors is prime: 1983163 = 7 * 13 * 19 * 31 * 37, and 7 + 13 + 19 + 31 + 37 = 107 is prime.
Programs
-
Maple
isb := proc(n) fs := numtheory[factorset](n) minus {2} ; if fs = {} then RETURN(false); else for f in fs do if op(1,f) mod 6 <> 1 then RETURN(false) ; fi; od: RETURN(true) ; fi; end: b := proc(n) if n = 1 then 7; else for a from procname(n-1)+1 do if isb(a) then RETURN(a) ; fi; od: fi; end: A164929 := proc(n) local f; numtheory[factorset]( b(n)) minus {2} ; add(f,f=%) ; end: seq(A164929(n),n=1..120) ; # R. J. Mathar, Sep 09 2009
Extensions
Edited and extended by R. J. Mathar, Sep 09 2009
Comments