A164927 Sum of the odd prime divisors of numbers with all odd prime divisors of the form 4k+1.
5, 5, 13, 17, 5, 5, 13, 29, 17, 37, 5, 41, 5, 13, 53, 29, 61, 18, 17, 73, 37, 5, 41, 22, 89, 97, 5, 101, 13, 53, 109, 113, 29, 61, 5, 18, 17, 137, 34, 73, 37, 149, 157, 5, 41, 13, 22, 173, 89, 181, 42, 193, 97, 197, 5, 101, 46, 13, 53, 109, 30, 113, 229, 29, 233, 241, 61, 5, 257
Offset: 1
Examples
a(18) = 18 because b(18) = 65 = 5*13, and 5+13 = 18. The smallest number, all of whose prime factors are of form 4n+1, whose sum of distinct prime factors is prime: 1885 = 5 * 13 * 29; and 5 + 13 + 29 = 47.
Programs
-
Maple
isb := proc(n) fs := numtheory[factorset](n) minus {2} ; if fs = {} then RETURN(false); else for f in fs do if op(1,f) mod 4 <> 1 then RETURN(false) ; fi; od: RETURN(true) ; fi; end: b := proc(n) if n = 1 then 5; else for a from procname(n-1)+1 do if isb(a) then RETURN(a) ; fi; od: fi; end: A164927 := proc(n) local f; numtheory[factorset]( b(n)) minus {2} ; add(f,f=%) ; end: seq(A164927(n),n=1..120) ; # R. J. Mathar, Sep 09 2009
Extensions
Edited, definition clarified by R. J. Mathar, Sep 08 2009
Comments