A164928 Sum of the odd prime divisors of numbers whose odd prime divisors are all of the form 4k+3.
3, 3, 7, 3, 11, 3, 7, 3, 19, 10, 11, 23, 3, 3, 7, 31, 14, 3, 19, 10, 43, 11, 23, 47, 3, 7, 3, 7, 22, 59, 31, 10, 14, 67, 26, 71, 3, 19, 18, 79, 3, 83, 10, 43, 11, 23, 34, 47, 3, 7, 14, 103, 107, 3, 7, 22, 59, 11, 31, 10, 127, 46, 131, 14, 26, 67, 26, 139, 50, 71, 3, 10, 151, 19, 18
Offset: 1
Examples
a(11) = 10 because b(11) = 21 = 3*7, and 3+7 = 10. The smallest nonprime number, all of whose prime factors are of form 4n+3, whose sum of distinct prime factors is prime: b(181) = 3*7*19 = 399; 3+7+19 = 29.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isb := proc(n) fs := numtheory[factorset](n) minus {2} ; if fs = {} then RETURN(false); else for f in fs do if op(1,f) mod 4 <> 3 then RETURN(false) ; fi; od: RETURN(true) ; fi; end: b := proc(n) if n = 1 then 3; else for a from procname(n-1)+1 do if isb(a) then RETURN(a) ; fi; od: fi; end: A164928 := proc(n) local f; numtheory[factorset]( b(n)) minus {2} ; add(f,f=%) ; end: seq(A164928(n),n=1..120) ; # R. J. Mathar, Sep 08 2009
-
Mathematica
sopd[n_]:=Module[{ff=Select[Transpose[FactorInteger[n]][[1]],OddQ]},If[ And@@ (Mod[#,4]==3&/@ff),Total[ff],0]]; Select[Array[sopd,200],#>0&] (* Harvey P. Dale, Dec 16 2013 *)
Extensions
Edited and extended by R. J. Mathar, Sep 08 2009
Comments