A164937 Near-repdigit primes.
101, 113, 131, 151, 181, 191, 199, 211, 223, 227, 229, 233, 277, 311, 313, 331, 337, 353, 373, 383, 433, 443, 449, 499, 557, 577, 599, 661, 677, 727, 733, 757, 773, 787, 797, 811, 877, 881, 883, 887, 911, 919, 929, 977, 991, 997, 1117, 1151, 1171, 1181, 1511
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..22172 (first 5000 terms from Arkadiusz Wesolowski)
- Chris Caldwell, The Top 20 Near-repdigit Primes
- Chris Caldwell, The Prime Glossary, Near-repdigit prime
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015)
Crossrefs
Programs
-
Mathematica
lst = {}; Do[If[PrimeQ[n] && SortBy[Tally[IntegerDigits[n]], Last][[-1, -1]] == IntegerLength[n] - 1, AppendTo[lst, n]], {n, 101, 10^3}]; lst (* Arkadiusz Wesolowski, Sep 18 2011 *) lst = {}; Do[r = (10^n - 1)/9; Do[AppendTo[lst, DeleteCases[Select[FromDigits[Permutations[Append[IntegerDigits[a*r], d]]], PrimeQ], r | 2 | 3 | 5 | 7]], {a, 9}, {d, 0, 9}], {n, 2, 6}]; Sort[Flatten[lst]] (* Arkadiusz Wesolowski, Sep 22 2011 *)
-
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms for d in count(3): ds = set() for end in "1379": ds.update(int(c*(d-1) + end) for c in "123456789" if c != end) for diff in "0123456789": if end == diff: continue cands = (end*i + diff + end*(d-1-i) for i in range(d-1)) ds.update(int(t) for t in cands if t[0] != "0") yield from sorted(t for t in ds if isprime(t)) print(list(islice(agen(), 52))) # Michael S. Branicky, May 17 2022
Extensions
Three more terms from Lekraj Beedassy, Dec 06 2009