cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164941 a(n) = Sum_{d|n} phi(n/d)^(d-1).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 6, 7, 2, 17, 2, 9, 34, 15, 2, 45, 2, 87, 102, 13, 2, 191, 258, 15, 294, 289, 2, 1579, 2, 203, 1126, 19, 5394, 2577, 2, 21, 4242, 17227, 2, 16083, 2, 2037, 83282, 25, 2, 36107, 46658, 262423, 65794, 5839, 2, 139161, 1058578, 292455
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^(n/d-1)); \\ Seiichi Manyama, Mar 13 2021
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-2)); \\ Seiichi Manyama, Mar 13 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-eulerphi(k)*x^k))) \\ Seiichi Manyama, Mar 13 2021

Formula

G.f.: Sum_{k>=1} x^k/(1-phi(k)*x^k).
From Seiichi Manyama, Mar 13 2021: (Start)
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 2).
If p is prime, a(p) = 2. (End)