A164942 Triangle, read by rows, T(n,k) = (-1)^k*binomial(n, k)*3^(n-k).
1, 3, -1, 9, -6, 1, 27, -27, 9, -1, 81, -108, 54, -12, 1, 243, -405, 270, -90, 15, -1, 729, -1458, 1215, -540, 135, -18, 1, 2187, -5103, 5103, -2835, 945, -189, 21, -1, 6561, -17496, 20412, -13608, 5670, -1512, 252, -24, 1, 19683, -59049, 78732, -61236, 30618, -10206, 2268, -324, 27, -1
Offset: 0
Examples
Begins as triangle: 1; 3, -1; 9, -6, 1; 27, -27, 9, -1; 81, -108, 54, -12, 1; 243, -405, 270, -90, 15, -1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[(-1)^k*Binomial(n, k)*3^(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 17 2020
-
Maple
seq(seq( (-1)^k*binomial(n, k)*3^(n-k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
-
Mathematica
With[{m = 9}, CoefficientList[CoefficientList[Series[1/(1-3*x+x*y), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
-
Sage
[[(-1)^k*binomial(n, k)*3^(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020
Formula
T(n,k) = (-1)^n*(Inverse of A027465).
T(n,k) = 3*T(n-1,k) - T(n-1,k-1). - Philippe Deléham, Oct 09 2011
G.f.: 1/(1-3*x+x*y). - R. J. Mathar, Aug 11 2015
Extensions
More terms from Philippe Deléham, Oct 09 2011
a(46) corrected by Georg Fischer, Feb 17 2020
Title changed by G. C. Greubel, Feb 17 2020
Comments