A164952 Primes p with the property: if p/3 is in the interval (p_m, p_(m+1)), where p_m>=3 and p_k is the k-th prime, then the interval (p, 3p_(m+1)) contains a prime.
2, 3, 11, 17, 23, 29, 41, 43, 59, 61, 71, 73, 79, 97, 101, 103, 107, 131, 137, 149, 151, 163, 167, 179, 191, 193, 223, 227, 229, 239, 251, 257, 269, 271, 277, 281, 311, 331, 347, 349, 353, 359, 367, 373, 383, 397, 419, 421, 431, 433, 439, 457, 461, 463, 479, 491
Offset: 1
Keywords
Examples
If p=61, the p/3 is in the interval (19, 23); we see that the interval (61,69) contains a prime (67).
Links
- Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
Programs
-
Mathematica
nn=1000; t=Table[0, {nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/3], s--]; If[s
Extensions
Extended and edited by T. D. Noe, Nov 22 2010
Comments edited by Jonathan Sondow, Aug 27 2011
Comments