cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A085881 Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by A001147(n).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 15, 45, 45, 15, 105, 420, 630, 420, 105, 945, 4725, 9450, 9450, 4725, 945, 10395, 62370, 155925, 207900, 155925, 62370, 10395, 135135, 945945, 2837835, 4729725, 4729725, 2837835, 945945, 135135, 2027025, 16216200, 56756700, 113513400, 141891750, 113513400, 56756700, 16216200, 2027025
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2003

Keywords

Examples

			Triangle starts:
       1;
       1,      1;
       3,      6,       3;
      15,     45,      45,      15;
     105,    420,     630,     420,     105;
     945,   4725,    9450,    9450,    4725,     945;
   10395,  62370,  155925,  207900,  155925,   62370,  10395;
  135135, 945945, 2837835, 4729725, 4729725, 2837835, 945945, 135135;
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n) *Factorial(n)/2^n ))); # G. C. Greubel, Feb 07 2020
  • Magma
    [Binomial(n,k)*Binomial(2*n,n)*Factorial(n)/2^n: k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    T:= (n, k)-> n!/2^n*binomial(n, k)*binomial(2*n, n):
    seq(seq(T(n, k), k=0..n), n=0..10); # Yu-Sheng Chang, Jan 16 2020
  • Mathematica
    Table[Binomial[n, k]*(2*n-1)!!, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(2*n,n)*n!/2^n;
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 07 2020
    
  • Sage
    [[binomial(n,k)*(2*n-1).multifactorial(2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
    

Formula

Triangle given by [1, 2, 3, 4, 5, 6, ...] DELTA [1, 2, 3, 4, 5, 6, ...] where DELTA is Deléham's operator defined in A084938.
T(n,k) = A164961(n,k)/2^n. - Philippe Deléham, Jan 07 2012
Recurrence equation: T(n+1,k) = (2*n+1)*(T(n,k) + T(n,k-1)). - Peter Bala, Jul 15 2012
E.g.f.: 1/sqrt(1-2*x-2*x*y). - Peter Bala, Jul 15 2012
G.f.: W(0), where W(k) = 1 - (k+1)*x*(1+y)/( (k+1)*x*(1+y) - 1/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
Showing 1-1 of 1 results.