cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164975 Triangle T(n,k) read by rows: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(n,0) = A000045(n), 0 <= k <= n-1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 8, 8, 8, 5, 15, 25, 20, 16, 8, 30, 55, 70, 48, 32, 13, 56, 125, 175, 184, 112, 64, 21, 104, 262, 440, 512, 464, 256, 128, 34, 189, 539, 1014, 1401, 1416, 1136, 576, 256, 55, 340, 1075, 2270, 3501, 4170, 3760, 2720, 1280, 512
Offset: 1

Views

Author

Mark Dols, Sep 03 2009

Keywords

Comments

A164975 is jointly generated with A209125 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+ 2x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012

Examples

			Triangle T(n,k), 0 <= k < n, n >= 1, begins:
   1;
   1,   2;
   2,   3,   4;
   3,   8,   8,   8;
   5,  15,  25,  20,  16;
   8,  30,  55,  70,  48,  32;
  13,  56, 125, 175, 184, 112,  64;
  21, 104, 262, 440, 512, 464, 256, 128;
  ...
T(7,1) = 30 + 2*8 + 15 - 5 = 56.
T(6,1) = 15 + 2*5 +  8 - 3 = 30.
		

Crossrefs

Cf. A000045, A000079, A000244 (row sums).

Programs

  • Maple
    A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209125 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A164975 *)
    (* Clark Kimberling, Mar 05 2012 *)
    With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)

Formula

T(n,n-1) = A000079(n-1).
T(n,n-2) = A001792(n-2). - R. J. Mathar, Jan 27 2011
T(n,1) = A099920(n-1). - R. J. Mathar, Jan 27 2011
G.f.: x/(1-2*y*x-x-x^2+y*x^2). - Philippe Deléham, Mar 21 2012
Sum_{k=0..n-1, n>0} T(n,k)*x^k = A000045(n), A000244(n-1), A004254(n), A186446(n-1), A190980(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 21 2012

Extensions

Corrected by Philippe Deléham, Mar 21 2012