A164975 Triangle T(n,k) read by rows: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(n,0) = A000045(n), 0 <= k <= n-1.
1, 1, 2, 2, 3, 4, 3, 8, 8, 8, 5, 15, 25, 20, 16, 8, 30, 55, 70, 48, 32, 13, 56, 125, 175, 184, 112, 64, 21, 104, 262, 440, 512, 464, 256, 128, 34, 189, 539, 1014, 1401, 1416, 1136, 576, 256, 55, 340, 1075, 2270, 3501, 4170, 3760, 2720, 1280, 512
Offset: 1
Examples
Triangle T(n,k), 0 <= k < n, n >= 1, begins: 1; 1, 2; 2, 3, 4; 3, 8, 8, 8; 5, 15, 25, 20, 16; 8, 30, 55, 70, 48, 32; 13, 56, 125, 175, 184, 112, 64; 21, 104, 262, 440, 512, 464, 256, 128; ... T(7,1) = 30 + 2*8 + 15 - 5 = 56. T(6,1) = 15 + 2*5 + 8 - 3 = 30.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Maple
A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209125 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A164975 *) (* Clark Kimberling, Mar 05 2012 *) With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)
Formula
T(n,n-1) = A000079(n-1).
T(n,n-2) = A001792(n-2). - R. J. Mathar, Jan 27 2011
T(n,1) = A099920(n-1). - R. J. Mathar, Jan 27 2011
G.f.: x/(1-2*y*x-x-x^2+y*x^2). - Philippe Deléham, Mar 21 2012
Extensions
Corrected by Philippe Deléham, Mar 21 2012
Comments