A164977 Numbers m such that the set {1..m} has only one nontrivial decomposition into subsets with equal element sum.
3, 4, 5, 6, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282
Offset: 1
Examples
10 is in the sequence, because there is only one nontrivial decomposition of {1..10} into subsets with equal element sum: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}; 11|55. 13 is in the sequence with decomposition of {1..13}: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}, {13}; 13|91.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 2, a(n-1)) while not (andmap(isprime, [k, (k+1)/2]) or andmap(isprime, [k+1, k/2])) do od; k end: seq(a(n), n=1..100);
-
Mathematica
Select[Range@1304, PrimeOmega[#] + PrimeOmega[# + 1] == 3 &] (* Robert G. Wilson v, Jun 28 2010 and updated Sep 21 2018 *)
-
PARI
is(n)=if(isprime(n),bigomega(n+1)==2, isprime(n+1) && bigomega(n)==2) \\ Charles R Greathouse IV, Sep 08 2015
-
PARI
is(n)=if(n%2, isprime((n+1)/2) && isprime(n), isprime(n/2) && isprime(n+1)) \\ Charles R Greathouse IV, Mar 16 2022
-
PARI
list(lim)=my(v=List()); forprime(p=3,lim, if(isprime((p+1)/2), listput(v,p))); forprime(p=5,lim+1, if(isprime(p\2), listput(v,p-1))); Set(v) \\ Charles R Greathouse IV, Mar 16 2022
Comments