cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164977 Numbers m such that the set {1..m} has only one nontrivial decomposition into subsets with equal element sum.

Original entry on oeis.org

3, 4, 5, 6, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282
Offset: 1

Views

Author

Alois P. Heinz, Sep 03 2009

Keywords

Comments

Numbers m such that the triangular number T(m) = m*(m+1)/2 has exactly two divisors >= m.
Also numbers m such that m*(m+1)/2 is the product of two primes.
Contains all numbers in A005383. - Harry Richman, Jan 09 2025
Contains all numbers in A077065. - Alois P. Heinz, Jan 19 2025

Examples

			10 is in the sequence, because there is only one nontrivial decomposition of {1..10} into subsets with equal element sum: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}; 11|55.
13 is in the sequence with decomposition of {1..13}: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}, {13}; 13|91.
		

Crossrefs

Cf. A005383, A077065 (distinct subsequences).

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 2, a(n-1))
          while not (andmap(isprime, [k, (k+1)/2]) or
                     andmap(isprime, [k+1, k/2]))
          do od; k
        end:
    seq(a(n), n=1..100);
  • Mathematica
    Select[Range@1304, PrimeOmega[#] + PrimeOmega[# + 1] == 3 &] (* Robert G. Wilson v, Jun 28 2010 and updated Sep 21 2018 *)
  • PARI
    is(n)=if(isprime(n),bigomega(n+1)==2, isprime(n+1) && bigomega(n)==2) \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    is(n)=if(n%2, isprime((n+1)/2) && isprime(n), isprime(n/2) && isprime(n+1)) \\ Charles R Greathouse IV, Mar 16 2022
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,lim, if(isprime((p+1)/2), listput(v,p))); forprime(p=5,lim+1, if(isprime(p\2), listput(v,p-1))); Set(v) \\ Charles R Greathouse IV, Mar 16 2022

Formula

{ m : A035470(m) = 2 }.
{ m : A164978(m) = 2 }.
{ m : |{d|m*(m+1)/2 : d>=m}| = 2 }.
{ m : m*(m+1)/2 in {A068443} }.
{ m : m*(m+1)/2 in {A001358} }.
{ m : A069904(m) = 2 }.
{ m : A001222(n) + A001222(n+1) = 3 }. - Alois P. Heinz, Jan 08 2022
{ A005383 } union { A077065 }. - Alois P. Heinz, Jan 19 2025