A165136 a(n) is the number of patterns for n-digit papaya numbers.
1, 2, 4, 10, 21, 50, 99, 250, 454, 1242, 2223, 6394, 11389, 35002, 62034, 202010, 359483, 1233518, 2203507, 7944100, 14249715, 53810836, 96911168, 382258438, 691048071, 2840120987, 5152403569, 22010733048, 40059670261, 177444599715
Offset: 1
Examples
There are two types of two-digit papaya numbers: aa, or ab. Hence a(2) = 2. There are four types of three-digit papaya numbers: aaa, aab, aba, abb. Hence a(3) = 4. There is no pattern of the form "abcdefghijkl" contributing to a(12), because this requires 12 different letters in the alphabet, and the standard numbers alphabet provides only ten different digits 0-9.
Links
- Tanya Khovanova, Papaya Words and Numbers
Formula
a(n) = R(n) - Sum_{d|n,dAndrew Howroyd, Mar 29 2016
Extensions
Three more terms from R. J. Mathar, Sep 25 2009
Keyword:base added, comment expanded - R. J. Mathar, Aug 29 2010
a(10)-a(14) from Franklin T. Adams-Watters, Apr 10 2011
a(15)-a(30) from Andrew Howroyd, Mar 29 2016
Comments