cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165158 Hypotenuses of primitive Pythagorean triangles such that all 3 sides are composite.

Original entry on oeis.org

65, 85, 125, 145, 169, 185, 205, 221, 265, 289, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 625, 629, 685, 689, 697, 725, 745, 785, 793, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205, 1241
Offset: 1

Views

Author

Keywords

Comments

Numbers C in triples of the form A^2+B^2=C^2, gcd(A,B,C)=1 and all of A, B and C in A002808.
If multiple solutions exist for the same C, as for example (A,B,C) = (16,63,65) and (33,56,65),
only one instance of C is added to the sequence.

Examples

			(A,B,C) = (16,63,65), (36,77,85), (44,117,125) etc
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]]&&GCD[a,b,c]==1,If[a>=b,Break[]]; If[ !PrimeQ[a]&&!PrimeQ[b]&&!PrimeQ[c],AppendTo[lst,c]]],{b,c-1,4, -1}],{c,5,2000,1}];Union@lst
    Select[Sort[{Numerator[#],Denominator[#],Sqrt[Numerator[#]^2+Denominator[#]^2]}&/@ Union[ #[[1]]/#[[2]]&/@Union[Sort/@Select[Select[Flatten[Outer[List,Range[1500],Range[ 1500]],1],#[[1]]!=#[[2]]&],IntegerQ[Sqrt[#[[1]]^2+#[[2]]^2]]&]]]],AllTrue[#,CompositeQ]&][[;;,3]]//Union (* Harvey P. Dale, Aug 27 2024 *)

Extensions

Typo in description corrected by Alan Frank, Oct 09 2009
Definition clarified, comment moved to the examples and new comment added - R. J. Mathar, Oct 21 2009