A165160 Short legs in primitive Pythagorean triangles with three side lengths of composite integers.
16, 21, 24, 27, 33, 36, 44, 55, 56, 57, 60, 63, 64, 68, 75, 76, 77, 81, 84, 87, 88, 91, 92, 93, 96, 99, 100, 104, 105, 111, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 132, 133, 135, 136, 140, 143, 144, 147, 152, 153, 155, 156, 160, 161, 164, 165, 168, 172
Offset: 1
Keywords
Examples
(A,B,C) = (16,63,65) contributes A = 16 to the sequence. (A,B,C) = (21,220,221) contributes A = 21. Further length triples are (24,143,145), (27,364,365), (33,56,65), (33,544,545), (36,77,85), (36,323,325), (44,117,125), (44,483,485), (55,1512,1513), (56,783,785), (57,176,185).
Programs
-
Mathematica
lst={}; Do[Do[If[IntegerQ[c=Sqrt[a^2+b^2]] && GCD[a,b,c]==1,If[ !PrimeQ[a] && !PrimeQ[b] && !PrimeQ[c], AppendTo[lst,a]]],{b,a+1,Floor[a^2/2],1}], {a,3,400,1}]; Union@lst
Extensions
Edited by R. J. Mathar, Oct 02 2009
Comments