A165159 Long legs in primitive Pythagorean triangles with three side lengths of composite integers.
56, 63, 77, 117, 120, 143, 153, 156, 171, 176, 187, 220, 224, 240, 247, 253, 273, 304, 323, 345, 352, 357, 360, 364, 377, 396, 403, 416, 435, 437, 456, 460, 468, 475, 476, 483, 493, 513, 525, 527, 528, 544, 561, 621, 624, 627, 644, 663, 665, 667, 672, 680
Offset: 1
Keywords
A165262 Sorted hypotenuses with no repeats of Primitive Pythagorean Triples (PPT) if sum of all 3 sides are averages of twin prime pairs.
5, 13, 85, 113, 145, 197, 221, 241, 349, 457, 541, 569, 625, 821, 829, 841, 1025, 1037, 1093, 1157, 1241, 1433, 1465, 1621, 1741, 1769, 2029, 2069, 2249, 2353, 2441, 2465, 2501, 2669, 2725, 2801, 2809, 2825, 2873, 3029, 3077, 3221, 3293, 3305, 3389, 3889
Offset: 1
Examples
Triples begin 3,4,5; 5,12,13; 15,112,113; 21,220,221; 24,143,145; 28,195,197; 36,77,85; 41,840,841; 59,1740,1741; 64,1023,1025; 89,3960,3961; 100,2499,2501; ... So with sorted hypotenuses: 3 + 4 + 5 = 12, and 11 and 13 are twin primes; 5 + 12 + 13 = 30, and 29 and 31 are twin primes; ...
Crossrefs
Programs
-
Mathematica
amax=10^5; lst={}; k=0; q=12!; Do[If[(e=((n+1)^2-n^2))>amax,Break[]]; Do[If[GCD[m,n]==1,a=m^2-n^2; b=2*m*n; If[GCD[a,b]==1,If[a>b,{a,b}={b,a}]; If[a>amax,Break[]]; c=m^2+n^2; x=a+b+c; If[PrimeQ[x-1]&&PrimeQ[x+1],k++; AppendTo[lst,c]]]],{m,n+1,12!,2}],{n,1,q,1}]; Union@lst
Comments
Examples
Crossrefs
Programs
Mathematica
Extensions