cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165158 Hypotenuses of primitive Pythagorean triangles such that all 3 sides are composite.

Original entry on oeis.org

65, 85, 125, 145, 169, 185, 205, 221, 265, 289, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 625, 629, 685, 689, 697, 725, 745, 785, 793, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205, 1241
Offset: 1

Views

Author

Keywords

Comments

Numbers C in triples of the form A^2+B^2=C^2, gcd(A,B,C)=1 and all of A, B and C in A002808.
If multiple solutions exist for the same C, as for example (A,B,C) = (16,63,65) and (33,56,65),
only one instance of C is added to the sequence.

Examples

			(A,B,C) = (16,63,65), (36,77,85), (44,117,125) etc
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]]&&GCD[a,b,c]==1,If[a>=b,Break[]]; If[ !PrimeQ[a]&&!PrimeQ[b]&&!PrimeQ[c],AppendTo[lst,c]]],{b,c-1,4, -1}],{c,5,2000,1}];Union@lst
    Select[Sort[{Numerator[#],Denominator[#],Sqrt[Numerator[#]^2+Denominator[#]^2]}&/@ Union[ #[[1]]/#[[2]]&/@Union[Sort/@Select[Select[Flatten[Outer[List,Range[1500],Range[ 1500]],1],#[[1]]!=#[[2]]&],IntegerQ[Sqrt[#[[1]]^2+#[[2]]^2]]&]]]],AllTrue[#,CompositeQ]&][[;;,3]]//Union (* Harvey P. Dale, Aug 27 2024 *)

Extensions

Typo in description corrected by Alan Frank, Oct 09 2009
Definition clarified, comment moved to the examples and new comment added - R. J. Mathar, Oct 21 2009

A165160 Short legs in primitive Pythagorean triangles with three side lengths of composite integers.

Original entry on oeis.org

16, 21, 24, 27, 33, 36, 44, 55, 56, 57, 60, 63, 64, 68, 75, 76, 77, 81, 84, 87, 88, 91, 92, 93, 96, 99, 100, 104, 105, 111, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 132, 133, 135, 136, 140, 143, 144, 147, 152, 153, 155, 156, 160, 161, 164, 165, 168, 172
Offset: 1

Views

Author

Keywords

Comments

The sequence collects the numbers A such that A^2+B^2 = C^2, AA002808. If there are two or more triangles of this kind with the same A, like (A,B,C) = (33,544,545) and (A,B,C) = (33,56,65), only one instance of A is added to the sequence.

Examples

			(A,B,C) = (16,63,65) contributes A = 16 to the sequence. (A,B,C) = (21,220,221) contributes A = 21.
Further length triples are (24,143,145), (27,364,365), (33,56,65), (33,544,545), (36,77,85), (36,323,325), (44,117,125), (44,483,485), (55,1512,1513), (56,783,785), (57,176,185).
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[Do[If[IntegerQ[c=Sqrt[a^2+b^2]] && GCD[a,b,c]==1,If[ !PrimeQ[a] && !PrimeQ[b] && !PrimeQ[c], AppendTo[lst,a]]],{b,a+1,Floor[a^2/2],1}], {a,3,400,1}]; Union@lst

Extensions

Edited by R. J. Mathar, Oct 02 2009

A165262 Sorted hypotenuses with no repeats of Primitive Pythagorean Triples (PPT) if sum of all 3 sides are averages of twin prime pairs.

Original entry on oeis.org

5, 13, 85, 113, 145, 197, 221, 241, 349, 457, 541, 569, 625, 821, 829, 841, 1025, 1037, 1093, 1157, 1241, 1433, 1465, 1621, 1741, 1769, 2029, 2069, 2249, 2353, 2441, 2465, 2501, 2669, 2725, 2801, 2809, 2825, 2873, 3029, 3077, 3221, 3293, 3305, 3389, 3889
Offset: 1

Views

Author

Keywords

Examples

			Triples begin 3,4,5; 5,12,13; 15,112,113; 21,220,221; 24,143,145; 28,195,197; 36,77,85; 41,840,841; 59,1740,1741; 64,1023,1025; 89,3960,3961; 100,2499,2501; ...
So with sorted hypotenuses:
  3 +  4 +  5 = 12, and 11 and 13 are twin primes;
  5 + 12 + 13 = 30, and 29 and 31 are twin primes; ...
		

Crossrefs

Programs

  • Mathematica
    amax=10^5; lst={}; k=0; q=12!; Do[If[(e=((n+1)^2-n^2))>amax,Break[]]; Do[If[GCD[m,n]==1,a=m^2-n^2; b=2*m*n; If[GCD[a,b]==1,If[a>b,{a,b}={b,a}]; If[a>amax,Break[]]; c=m^2+n^2; x=a+b+c; If[PrimeQ[x-1]&&PrimeQ[x+1],k++; AppendTo[lst,c]]]],{m,n+1,12!,2}],{n,1,q,1}]; Union@lst
Showing 1-3 of 3 results.