cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165201 Expansion of 1/(1-x*c(x)^3), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Comments

Hankel transform is A165202. Essentially the same as A026674.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (1/2)*(2*0^n + Fibonacci(3*n-2) + Sum([0..n], j-> Binomial(2*j, j)*Fibonacci(3*(n-j)+1)/(1-2*j) ))); # G. C. Greubel, Jul 18 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-3*x-2*x^2 + (1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*x-2*x^2+(1-x)*Sqrt[1-4*x])/(2*(1-4*x-x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    ((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
    

Formula

G.f.: (1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
a(n) = (1/2)*Sum_{k=0..n} C(2k,k)*F(3(n-k)+1)/(1-2k) + (1/2)*(F(3n-2) + 2*0^n).
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+15*n-10)*a(n-1) +(15*n^2-69*n+80)*a(n-2) +2*(n-2)*(2*n-5)*a(n-3) =0. - R. J. Mathar, Nov 15 2011
a(n) ~ 1/10*(3*sqrt(5)-5)*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 20 2012