cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A236830 Riordan array (1/(1-x*C(x)^3), x*C(x)), C(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 16, 7, 3, 1, 65, 27, 11, 4, 1, 267, 108, 43, 16, 5, 1, 1105, 440, 173, 65, 22, 6, 1, 4597, 1812, 707, 267, 94, 29, 7, 1, 19196, 7514, 2917, 1105, 398, 131, 37, 8, 1, 80380, 31307, 12111, 4597, 1680, 575, 177, 46, 9, 1, 337284, 130883, 50503, 19196, 7085, 2488, 808, 233, 56, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 01 2014

Keywords

Comments

T(n+3,n) = A011826(n+5).

Examples

			Triangle begins:
      1;
      1,    1;
      4,    2,    1;
     16,    7,    3,    1;
     65,   27,   11,    4,   1;
    267,  108,   43,   16,   5,   1;
   1105,  440,  173,   65,  22,   6,  1;
   4597, 1812,  707,  267,  94,  29,  7, 1;
  19196, 7514, 2917, 1105, 398, 131, 37, 8, 1;
Production matrix is:
   1  1
   3  1   1
   6  1   1   1
  10  1   1   1   1
  15  1   1   1   1   1
  21  1   1   1   1   1   1
  28  1   1   1   1   1   1   1
  36  1   1   1   1   1   1   1   1
  45  1   1   1   1   1   1   1   1   1
  55  1   1   1   1   1   1   1   1   1   1
  66  1   1   1   1   1   1   1   1   1   1   1
  78  1   1   1   1   1   1   1   1   1   1   1   1
  91  1   1   1   1   1   1   1   1   1   1   1   1   1
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1) )))); # G. C. Greubel, Jul 18 2019
  • Magma
    [(&+[Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2019
    
  • Maple
    A236830 := (n,k) -> add(combinat:-fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i), i = 0..n-k): seq(seq(A236830(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
    RiordanArray[1/(1 - # c[#]^3)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
    Table[Sum[Binomial[2*n-k-j-2, n-k-j]*Fibonacci[2*j-1], {j,0,n-k}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 18 2019 *)
  • PARI
    T(n,k) = sum(j=0,n-k, binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    [[sum( binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1) for j in (0..n-k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 18 2019
    

Formula

Sum_{k=0..n} T(n,k) = A026726(n).
G.f.: 1/((x^2*C(x)^4-x*C(x))*y-x*C(x)^3+1), where C(x) the g.f. of A000108. - Vladimir Kruchinin, Apr 22 2015
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..n-k} Fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i).
The n-th row polynomial of row reverse triangle is the n-th degree Taylor polynomial of the rational function (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^4 = 1 + 4*x + 11*x^2 + 27*x^3 + 65*x^4 + O(x^5), giving row 4 as (65, 27, 11, 4, 1). (End)

A165202 Expansion of (1+x)/(1 - x + x^2)^2.

Original entry on oeis.org

1, 3, 3, -1, -6, -6, 1, 9, 9, -1, -12, -12, 1, 15, 15, -1, -18, -18, 1, 21, 21, -1, -24, -24, 1, 27, 27, -1, -30, -30, 1, 33, 33, -1, -36, -36, 1, 39, 39, -1, -42, -42, 1, 45, 45, -1, -48, -48, 1, 51, 51, -1, -54, -54, 1, 57, 57, -1, -60, -60, 1
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Crossrefs

Cf. A100050 (first differences).
Hankel transform of A165201.

Programs

  • GAP
    a:=[1,3,3,-1];; for n in [5..70] do a[n]:=2*a[n-1]-3*a[n-2]+ 2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 18 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x)/(1-x+x^2)^2 )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    LinearRecurrence[{2,-3,2,-1}, {1,3,3,-1}, 70] (* G. C. Greubel, Jul 18 2019 *)
    (-1)^Quotient[#-1,3]{1,1+#,#}[[Mod[#,3,1]]]&/@Range[0, 10] (* Federico Provvedi, Jul 18 2021 *)
  • PARI
    my(x='x+O('x^70)); Vec((1+x)/(1-x+x^2)^2) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    ((1+x)/(1-x+x^2)^2).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
    

Formula

a(n) = cos(Pi*n/3) + sin(Pi*n/3)*(2n/3 + 1)*sqrt(3).
a(n) = A099254(n) + A099254(n-1). - R. J. Mathar, May 02 2013

A108080 a(n) = Sum_{i=0..n} binomial(2*n+i,n-i).

Original entry on oeis.org

1, 3, 12, 50, 211, 895, 3805, 16193, 68940, 293526, 1249622, 5318976, 22634700, 96296410, 409573584, 1741574006, 7403616923, 31466106703, 133704121665, 568008916093, 2412570019447, 10245302874071, 43500597657111, 184670002546295, 783850164628721, 3326671128027805, 14116630429874265
Offset: 0

Views

Author

Ralf Stephan, Jun 03 2005

Keywords

Comments

Apparently a bisection of A026847.
Row sums of A159965. - Paul Barry, Apr 28 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/(x*Sqrt[1-4*x]-(1-2*x-(1-3*x)*(1-Sqrt[1-4*x])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    x='x+O('x^66); Vec(x/(x*sqrt(1-4*x)-(1-2*x-(1-3*x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 15 2013

Formula

From Paul Barry, Apr 28 2009: (Start)
G.f.: x/(x*sqrt(1-4x)-(1-2x-(1-3x)*c(x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n+k,j-k)*C(n,j). (End)
From Paul Barry, Sep 07 2009: (Start)
G.f.: (1/sqrt(1-4x))*(1/(1-xc(x)^3)), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(2n,n-k)*F(k+1) = Sum_{k=0..n} C(2n,k)*F(n-k+1).
a(n) = Sum_{k=0..n} C(2k,k) * A165201(n-k). (End)
From Vaclav Kotesovec, Oct 24 2012: (Start)
Recurrence: n*(17*n-93)*a(n) = 4*(34*n^2 - 189*n + 98)*a(n-1) - 5*(51*n^2 - 271*n + 252)*a(n-2) - 4*(17*n^2 - 184*n + 406)*a(n-3) + 44*(2*n-7) * a(n-4).
a(n) ~ 1/2*(1+1/sqrt(5))*(sqrt(5)+2)^n. (End)
a(n) = binomial(2*n, n)*hypergeom([1, -n, 1+2*n], [(1+n)/2, 1+n/2], -1/4). - Stefano Spezia, Jun 17 2025

A165203 Expansion of (1+x)*c(x)^3/(1-x*c(x)^3), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 5, 20, 81, 332, 1372, 5702, 23793, 99576, 417664, 1754866, 7383204, 31096466, 131084954, 552969854, 2334012425, 9856336324, 41639407776, 175971686398, 743888534968, 3145439344550, 13302946909338, 56272308538682
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Comments

Hankel transform is A165204.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x)*(1-Sqrt(1-4*x))^3/(x*(8*x^2 - (1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    Rest[CoefficientList[Series[(1+x)*((1-x)*Sqrt[1-4*x]+5*x-1)/(2*(1-4*x-x^2)), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec((1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2))) \\ Iain Fox, Feb 27 2018
    
  • Sage
    ((1+x)*(1-sqrt(1-4*x))^3/(x*(8*x^2 - (1-sqrt(1-4*x))^3)) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019

Formula

G.f. (for offset 1): (1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2)).
a(n) = (A165201(n) - 0^n) + A165201(n+1).
Conjecture: (n+1)*(5*n-31)*a(n) +(5*n^2+74*n+62)*a(n-1) +(-285*n^2+ 1072*n-757)*a(n-2) +(695*n^2-3674*n+4206)*a(n-3) +2*(45*n-74)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Dec 11 2011
a(n) ~ (18/sqrt(5)-8) * (2+sqrt(5))^(n+2). - Vaclav Kotesovec, Feb 01 2014
Showing 1-4 of 4 results.