cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A110666 Sequence is {a(1,n)}, where a(m,n) is defined at sequence A110665.

Original entry on oeis.org

0, 1, 1, -2, -6, -6, 0, 7, 7, -2, -12, -12, 0, 13, 13, -2, -18, -18, 0, 19, 19, -2, -24, -24, 0, 25, 25, -2, -30, -30, 0, 31, 31, -2, -36, -36, 0, 37, 37, -2, -42, -42, 0, 43, 43, -2, -48, -48, 0, 49, 49, -2, -54, -54, 0, 55, 55, -2, -60, -60, 0, 61, 61, -2, -66, -66, 0, 67, 67, -2, -72, -72, 0, 73, 73, -2, -78, -78, 0, 79, 79, -2, -84
Offset: 0

Views

Author

Leroy Quet, Aug 02 2005

Keywords

Examples

			a(0,n): 0,  1,  0, -3, -4, ...
a(1,n): 0,  1,  1, -2, -6, ...
a(2,n): 0,  1,  2,  0, -6, ...
a(3,n): 0,  1,  3,  3, -3, ...
a(4,n): 0,  1,  4,  7,  4, ...
Main diagonal of array is 0, 1, 2, 3, 4, ...
		

Crossrefs

Programs

  • Maple
    A11066x := proc(mmax,nmax) local a,i,j ; a := array(0..mmax,0..nmax) ; a[0,0] := 0 ; for i from 1 to nmax do a[0,i] := i-sum(binomial(2*i-k-1,i-1)*a[0,k],k=0..i-1) : od ; for j from 1 to mmax do a[j,0] := 0 ; for i from 1 to nmax do a[j,i] := a[j-1,i]+a[j,i-1] ; od ; od ; RETURN(a) ; end : nmax := 100 : m := 1: a := A11066x(m,nmax) : for n from 0 to nmax do printf("%d,",a[m,n]) ; od ; # R. J. Mathar, Sep 01 2006
  • Mathematica
    a[m_, 0] := 0; a[n_, n_] := n; a[0, n_] := n - Sum[Binomial[2*n - k - 1, n - 1]* a[0, k], {k, 0, n - 1}]; a[m_, n_] := a[m, n] = a[m - 1, n] + a[m, n - 1]; Table[a[1, n], {n, 0, 50}] (* G. C. Greubel, Sep 03 2017 *)

Formula

From R. J. Mathar, Oct 09 2013: (Start)
Conjecture: G.f. x*(-1+2*x) / ( (x-1)*(x^2-x+1)^2 ).
a(n) = -A010892(n-1) + A165202(n) -1. (End)

Extensions

More terms from R. J. Mathar, Sep 01 2006

A165201 Expansion of 1/(1-x*c(x)^3), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Comments

Hankel transform is A165202. Essentially the same as A026674.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (1/2)*(2*0^n + Fibonacci(3*n-2) + Sum([0..n], j-> Binomial(2*j, j)*Fibonacci(3*(n-j)+1)/(1-2*j) ))); # G. C. Greubel, Jul 18 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-3*x-2*x^2 + (1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*x-2*x^2+(1-x)*Sqrt[1-4*x])/(2*(1-4*x-x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    ((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
    

Formula

G.f.: (1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
a(n) = (1/2)*Sum_{k=0..n} C(2k,k)*F(3(n-k)+1)/(1-2k) + (1/2)*(F(3n-2) + 2*0^n).
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+15*n-10)*a(n-1) +(15*n^2-69*n+80)*a(n-2) +2*(n-2)*(2*n-5)*a(n-3) =0. - R. J. Mathar, Nov 15 2011
a(n) ~ 1/10*(3*sqrt(5)-5)*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 20 2012

A100050 A Chebyshev transform of n.

Original entry on oeis.org

0, 1, 2, 0, -4, -5, 0, 7, 8, 0, -10, -11, 0, 13, 14, 0, -16, -17, 0, 19, 20, 0, -22, -23, 0, 25, 26, 0, -28, -29, 0, 31, 32, 0, -34, -35, 0, 37, 38, 0, -40, -41, 0, 43, 44, 0, -46, -47, 0, 49, 50, 0, -52, -53, 0, 55, 56, 0, -58, -59, 0, 61, 62, 0, -64, -65, 0, 67, 68, 0, -70, -71, 0, 73, 74, 0, -76, -77, 0, 79, 80, 0, -82, -83, 0, 85, 86, 0
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

A Chebyshev transform of x/(1-x)^2: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).

Examples

			x + 2*x^2 - 4*x^4 - 5*x^5 + 7*x^7 + 8*x^8 - 10*x^10 - 11*x^11 + 13*x^13 + ...
		

Crossrefs

Cf. A165202 (partial sums).

Programs

  • Mathematica
    LinearRecurrence[{2, -3, 2, -1}, {0, 1, 2, 0},50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    {a(n) = n * (-1)^(n\3) * sign( n%3)} /* Michael Somos, Mar 19 2011 */
    
  • PARI
    {a(n) = local(A, p, e); if( abs(n)<1, 0, A = factor(abs(n)); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, -(-2)^e, (kronecker( -12, p) * p)^e))))} /* Michael Somos, Mar 19 2011 */
  • Sage
    [lucas_number1(n,2,1)*lucas_number1(n,1,1) for n in range(0,88)] # Zerinvary Lajos, Jul 06 2008
    

Formula

Euler transform of length 6 sequence [ 2, -3, -2, 0, 0, 2]. - Michael Somos, Mar 19 2011
a(n) is multiplicative with a(2^e) = -(-2)^e if e>0, a(3^e) = 0^e, a(p^e) = p^e if p == 1 (mod 6), a(p^e) = (-p)^e if p == 5 (mod 6). - Michael Somos, Mar 19 2011
G.f.: x*(1 - x^2)^3 *(1 - x^3)^2 / ((1 - x)^2 *(1 - x^6)^2) = x *(1 + x)^2 *(1 - x^2) / (1 + x^3)^2. - Michael Somos, Mar 19 2011
a(3*n) = 0, a(3*n + 1) = (-1)^n * (3*n + 1), a(3*n + 2) = (-1)^n * (3*n + 2). a(-n) = a(n). - Michael Somos, Mar 19 2011
G.f.: x(1-x^2)/(1-x+x^2)^2.
a(n) = 2*a(n-1) -3*a(n-2) +2*a(n-3) -a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*(n-2k)/(n-k).

A122765 Triangle read by rows: Let p(k, x) = x*p(k-1, x) - p(k-2, x). Then T(k,x) = dp(k,x)/dx.

Original entry on oeis.org

1, -1, 2, -2, -2, 3, 2, -6, -3, 4, 3, 6, -12, -4, 5, -3, 12, 12, -20, -5, 6, -4, -12, 30, 20, -30, -6, 7, 4, -20, -30, 60, 30, -42, -7, 8, 5, 20, -60, -60, 105, 42, -56, -8, 9, -5, 30, 60, -140, -105, 168, 56, -72, -9, 10
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2006

Keywords

Comments

Based on the coefficients of derivatives of the polynomials in A130777.

Examples

			Triangle begins as:
   1;
  -1,   2;
  -2,  -2,   3;
   2,  -6,  -3,   4;
   3,   6, -12,  -4,   5;
  -3,  12,  12, -20,  -5,   6;
  -4, -12,  30,  20, -30,  -6,   7;
   4, -20, -30,  60,  30, -42,  -7,   8;
   5,  20, -60, -60, 105,  42, -56,  -8,  9;
		

Crossrefs

Programs

  • Magma
    A122765:= func< n,k | k*(-1)^Binomial(n-k+1, 2)*Binomial(Floor((n+k)/2), k) >;
    [A122765(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 30 2022
    
  • Mathematica
    (* First program *)
    p[0,x]=1; p[1,x]=x-1; p[k_,x_]:= p[k, x]= x*p[k-1,x] -p[k-2,x]; a = Table[Expand[p[n, x]], {n, 0, 10}]; Table[CoefficientList[D[a[[n]], x], x], {n, 2, 10}]//Flatten
    (* Second program *)
    T[n_, k_]:= k*(-1)^Binomial[n-k+1,2]*Binomial[Floor[(n+k)/2], k];
    Table[T[n, k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 30 2022 *)
  • PARI
    tpol(n) = if (n<=0, 1, if (n==1, x-1, x*tpol(n-1) -tpol(n-2)));
    lista(nn) = {for(n=0, nn, pol = deriv(tpol(n)); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
    
  • SageMath
    def A122765(n, k): return k*(-1)^binomial(n-k+1, 2)*binomial(((n+k)//2), k)
    flatten( [[A122765(n,k) for k in range(1,n+1)] for n in range(1,15)] ) # G. C. Greubel, Dec 30 2022

Formula

From G. C. Greubel, Dec 30 2022: (Start)
T(n, k) = coefficient [x^k]( p(n, x) ), where p(n,x) = (2/(x^2-4))*((n+1)*chebyshev_T(n+1,x/2) -n*chebyshev_T(n,x/2) - (x/2)*(chebyshev_U(n,x/2) - chebyshev_U(n-1,x/2))).
T(n, k) = k*(-1)^binomial(n-k+1, 2)*binomial(floor((n+k)/2), k).
T(n, n) = n.
T(n, n-1) = -(n-1).
T(n, n-2) = -2*A000217(n-2).
T(n, n-3) = 2*A000217(n-3).
T(n, 1) = (-1)^binomial(n, 2)*floor((n+1)/2).
T(n, 2) = 2*(-1)^binomial(n-1, 2)*binomial(floor((n+2)/2), 2).
Sum_{k=1..n} T(n, k) = A076118(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^(n-1)*A165202(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = [n=1] - [n=2].
Sum_{k=1..floor((n+1)/2)} (-1)^k*T(n-k+1, k) = (-1)^binomial(n+1, 2)*b(n), where b(n) = 4^floor(n/4)*A026741(n/2) if n is even and b(n) = 4^floor((n-1)/4)*A026741((n-1)/4) if n is odd. (End)

Extensions

Name corrected and more terms from Michel Marcus, Feb 07 2014

A213172 Floor of the Euclidean distance of a point on the (1, 2, 3; 4, 5, 6) 3D walk.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 16, 21, 26, 32, 38, 45, 52, 61, 69, 78, 88, 99, 110, 121, 133, 146, 159, 173, 188, 203, 218, 234, 251, 268, 286, 305, 324, 343, 364, 384, 406, 428, 450, 473, 497, 521, 546, 571, 597, 624, 651, 679, 707, 736, 765, 795, 826, 857
Offset: 0

Views

Author

Jon Perry, Apr 14 2013

Keywords

Comments

Consider a standard 3-dimensional Euclidean lattice. We take 1 step along the positive x-axis, 2 along the positive y-axis, 3 along the positive z-axis, 4 along the positive x-axis, and so on. This sequence gives the floor of the Euclidean distance to the origin after n steps.
The (x,y,z) coordinates are (1,0,0), (1,2,0), (1,2,3), (5,2,3), (5,7,3), (5,7,9), (12,7,9) etc, where the x values run through A000326, the y-values through A005449, and the z-values through A045943. The squared Euclidean distances are s(n) = 1, 5, 14, 38, 83, 155, 274, 450,..., which obey the recurrence s(n) = 3*s(n-1) -3*s(n-2) +3*s(n-3) -6*s(n-4) +6*s(n-5) -3*s(n-6) +3*s(n-7) -3*s(n-8) +s(n-9), s(n) = (3*n^2+9*n+10)^2/108 +4*A099837(n+3)/27 -2*(-1)^n*A165202(n)/9, with a = floor(sqrt(s(n))). - R. J. Mathar, May 02 2013

Examples

			For a(4) we are at [5,2,3], so a(n) = floor(sqrt(25+4+9)) = 6.
		

Crossrefs

Programs

  • JavaScript
    p=new Array(0,0,0);
    for (a=0;a<100;a++) {
    p[a%3]+=a;
    document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]))+", ");
    }

Formula

a(n) ~ n^2 sqrt(3)/6. - Charles R Greathouse IV, May 02 2013
Showing 1-5 of 5 results.