cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100051 A Chebyshev transform of 1,1,1,...

Original entry on oeis.org

1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

1, followed by period 6: repeat [1, -1, -2, -1, 1, 2]. - Joerg Arndt, Aug 28 2024
A Chebyshev transform of 1/(1-x): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).
Transform of 1/(1+x) under the mapping g(x)->((1+x)/(1-x))g(x/(1-x)^2). - Paul Barry, Dec 01 2004
Multiplicative with a(p^e) = -1 if p = 2; -2 if p = 3; 1 otherwise. - David W. Wilson, Jun 10 2005

Examples

			G.f. = 1 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^2)/(1 - x + x^2), {x,0,50}], x] (* G. C. Greubel, May 03 2017 *)
    LinearRecurrence[{1,-1},{1,1,-1},80] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    {a(n) = - (n == 0) + [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Mar 21 2011 */

Formula

From Paul Barry, Dec 01 2004: (Start)
G.f.: (1-x^2)/(1-x+x^2).
a(n) = a(n-1) - a(n-2), n>2.
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)/(n-k).
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*(2n/(n+k))*(-1)^k, n>1. (End)
Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6].
Euler transform of length 6 sequence [1, -2, -1, 0, 0, 1].
a(n) = a(-n). a(n) = c_6(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n) = A087204(n), n>0. - R. J. Mathar, Sep 02 2008
a(n) = A057079(n+1), n>0. Dirichlet g.f. zeta(s) *(1-2^(1-s)-3^(1-s)+6^(1-s)). - R. J. Mathar, Apr 11 2011

A091684 a(n) = 0 if n is divisible by 3, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 10, 11, 0, 13, 14, 0, 16, 17, 0, 19, 20, 0, 22, 23, 0, 25, 26, 0, 28, 29, 0, 31, 32, 0, 34, 35, 0, 37, 38, 0, 40, 41, 0, 43, 44, 0, 46, 47, 0, 49, 50, 0, 52, 53, 0, 55, 56, 0, 58, 59, 0, 61, 62, 0, 64, 65, 0, 67, 68, 0, 70, 71, 0, 73, 74, 0, 76, 77, 0, 79, 80
Offset: 0

Views

Author

Paul Barry, Jan 28 2004

Keywords

Comments

Multiplicative with a(3^e) = 0, a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
Completely multiplicative with a(3) = 0, a(p) = p otherwise. - Charles R Greathouse IV, Feb 21 2011

Examples

			x + 2*x^2 + 4*x^4 + 5*x^5 + 7*x^7 + 8*x^8 + 10*x^10 + 11*x^11 + 13*x^13 + ...
		

Crossrefs

Programs

Formula

a(n) = Product_{k=0..2} Sum_{j=1..n} w(3)^(k*j), w(3)=e^(2*Pi*i/3), i=sqrt(-1).
a(n) = 2*n/3 - n*sin(2*Pi*n/3 + Pi/3)/sqrt(3) - n*cos(2*Pi*n/3 + Pi/3)/3.
G.f.: x*(x^4 + 2*x^3 + 2*x + 1)/((x^2 + x + 1)^2*(x - 1)^2). - Ralf Stephan, Jan 29 2004
a(n) = n^3 mod 3n = A000027(n)*A011655(n). - Paul Barry, Apr 13 2005
Dirichlet g.f.: zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
a(3*n) = 0, a(3*n + 1) = 3*n + 1, a(3*n + 2) = 3*n + 2. a(-n) = -a(n). - Michael Somos, Mar 19 2011
a(n) = n * sign(n mod 3). - Wesley Ivan Hurt, Sep 24 2017

A165202 Expansion of (1+x)/(1 - x + x^2)^2.

Original entry on oeis.org

1, 3, 3, -1, -6, -6, 1, 9, 9, -1, -12, -12, 1, 15, 15, -1, -18, -18, 1, 21, 21, -1, -24, -24, 1, 27, 27, -1, -30, -30, 1, 33, 33, -1, -36, -36, 1, 39, 39, -1, -42, -42, 1, 45, 45, -1, -48, -48, 1, 51, 51, -1, -54, -54, 1, 57, 57, -1, -60, -60, 1
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Crossrefs

Cf. A100050 (first differences).
Hankel transform of A165201.

Programs

  • GAP
    a:=[1,3,3,-1];; for n in [5..70] do a[n]:=2*a[n-1]-3*a[n-2]+ 2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 18 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x)/(1-x+x^2)^2 )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    LinearRecurrence[{2,-3,2,-1}, {1,3,3,-1}, 70] (* G. C. Greubel, Jul 18 2019 *)
    (-1)^Quotient[#-1,3]{1,1+#,#}[[Mod[#,3,1]]]&/@Range[0, 10] (* Federico Provvedi, Jul 18 2021 *)
  • PARI
    my(x='x+O('x^70)); Vec((1+x)/(1-x+x^2)^2) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    ((1+x)/(1-x+x^2)^2).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
    

Formula

a(n) = cos(Pi*n/3) + sin(Pi*n/3)*(2n/3 + 1)*sqrt(3).
a(n) = A099254(n) + A099254(n-1). - R. J. Mathar, May 02 2013
Showing 1-3 of 3 results.