cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165206 a(n) = (3-4*n)*F(2*n-2) + (4-7*n)*F(2*n-1).

Original entry on oeis.org

1, -3, -25, -112, -416, -1411, -4537, -14085, -42653, -126794, -371554, -1076423, -3089555, -8799207, -24897121, -70052356, -196151492, -546916555, -1519249933, -4206274089, -11611243109, -31967026718, -87796880710
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Comments

Hankel transform of A165205.

Crossrefs

Cf. A000045.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> (3-4*n)*F(2*n-2)+(4-7*n)*F(2*n-1) ); # G. C. Greubel, Jul 18 2019
  • Magma
    F:=Fibonacci; [(3-4*n)*F(2*n-2)+(4-7*n)*F(2*n-1): n in [0..30]]; // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    Table[(3-4n)Fibonacci[2n-2]+(4-7n)Fibonacci[2n-1],{n,0,30}] (* or *) LinearRecurrence[{6,-11,6,-1},{1,-3,-25,-112},30] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    vector(30, n, n--; f=fibonacci; (3-4*n)*f(2*n-2)+(4-7*n)*f(2*n-1)) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    f=fibonacci; [(3-4*n)*f(2*n-2)+(4-7*n)*f(2*n-1) for n in (0..30)] # G. C. Greubel, Jul 18 2019
    

Formula

G.f.: (1-9*x+4*x^2-x^3)/(1-3*x+x^2)^2 = (1-x)/(1-3*x+x^2) - 5*x/(1-3*x+x^2)^2.
a(n) = -5*A001871(n-1) + A001519(n+1). - R. J. Mathar, Dec 16 2024