A165206 a(n) = (3-4*n)*F(2*n-2) + (4-7*n)*F(2*n-1).
1, -3, -25, -112, -416, -1411, -4537, -14085, -42653, -126794, -371554, -1076423, -3089555, -8799207, -24897121, -70052356, -196151492, -546916555, -1519249933, -4206274089, -11611243109, -31967026718, -87796880710
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Crossrefs
Cf. A000045.
Programs
-
GAP
F:=Fibonacci;; List([0..30], n-> (3-4*n)*F(2*n-2)+(4-7*n)*F(2*n-1) ); # G. C. Greubel, Jul 18 2019
-
Magma
F:=Fibonacci; [(3-4*n)*F(2*n-2)+(4-7*n)*F(2*n-1): n in [0..30]]; // G. C. Greubel, Jul 18 2019
-
Mathematica
Table[(3-4n)Fibonacci[2n-2]+(4-7n)Fibonacci[2n-1],{n,0,30}] (* or *) LinearRecurrence[{6,-11,6,-1},{1,-3,-25,-112},30] (* Harvey P. Dale, Aug 25 2013 *)
-
PARI
vector(30, n, n--; f=fibonacci; (3-4*n)*f(2*n-2)+(4-7*n)*f(2*n-1)) \\ G. C. Greubel, Jul 18 2019
-
Sage
f=fibonacci; [(3-4*n)*f(2*n-2)+(4-7*n)*f(2*n-1) for n in (0..30)] # G. C. Greubel, Jul 18 2019
Formula
G.f.: (1-9*x+4*x^2-x^3)/(1-3*x+x^2)^2 = (1-x)/(1-3*x+x^2) - 5*x/(1-3*x+x^2)^2.
Comments