A165224 a(0)=1, a(1)=9, a(n) = 18*a(n-1) - 49*a(n-2) for n > 1.
1, 9, 113, 1593, 23137, 338409, 4957649, 72655641, 1064876737, 15607654857, 228758827313, 3352883803641, 49142725927201, 720277760311209, 10557006115168913, 154732499817791193, 2267891697076964737
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (18,-49).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{18,-49},{1,9},20] (* Harvey P. Dale, Sep 30 2016 *)
Formula
G.f.: (1-9x)/(1-18x+49x^2);
e.g.f.: exp(9x)*cosh(4*sqrt(2)x);
a(n) = Sum_{k=0..n} 8^k*binomial(2n,2k) = Sum_{k=0..n} 8^k*A086645(n,k);
a(n) = 7^n*T(n,9/7) where T is the Chebyshev polynomial of the first kind;
a(n) = (1+sqrt(8))^(2n)/2 + (1-sqrt(8))^(2n)/2.
a(n) = ((9-4*sqrt(2))^n + (9+4*sqrt(2))^n)/2. - Klaus Brockhaus, Sep 25 2009
Comments