A165242 The larger member of the n-th twin prime pair, modulo 8.
5, 7, 5, 3, 7, 3, 5, 1, 7, 5, 3, 7, 5, 1, 7, 5, 1, 7, 3, 1, 5, 5, 1, 7, 3, 3, 1, 3, 3, 5, 3, 7, 5, 3, 3, 5, 1, 3, 7, 5, 1, 7, 7, 3, 7, 1, 5, 5, 3, 1, 1, 5, 5, 3, 3, 5, 1, 7, 5, 7, 7, 5, 3, 1, 1, 3, 7, 7, 5, 7, 5, 7, 7, 1, 3, 1, 1, 3, 7, 3, 3, 1, 1, 1, 5, 3, 5, 3, 1, 5, 7, 7, 5, 1, 5, 7, 7, 1, 1, 7, 5, 7, 3, 3, 5
Offset: 1
References
- Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.
Links
- Jeffrey Hatley, On the Rank of the Elliptic Curve y^2=x(x-p)(x-2), arXiv:0909.1614 [math.NT], 2009.
Programs
-
Maple
A006512 := proc(n) if n = 1 then 5; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a-2) then RETURN(a) ; fi; od: fi; end: A165242 := proc(n) A006512(n) mod 8 ; end: seq(A165242(n),n=1..120) ; # R. J. Mathar, Sep 16 2009
-
Mathematica
Mod[#,8]&/@(Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==2&][[All,2]]) (* Harvey P. Dale, Sep 26 2016 *)
Extensions
Redefined for the larger member of twin primes by R. J. Mathar, Sep 16 2009
Comments