A165322 a(0)=1, a(1)=7, a(n)=15*a(n-1)-49*a(n-2) for n>1.
1, 7, 56, 497, 4711, 46312, 463841, 4688327, 47596696, 484222417, 4931098151, 50239573832, 511969798081, 5217807853447, 53180597695736, 542036380617137, 5524696422165991, 56310663682250152, 573949830547618721
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (15,-49).
Crossrefs
Cf. A165253.
Programs
-
Mathematica
LinearRecurrence[{15,-49},{1,7},20] (* Harvey P. Dale, Jun 04 2021 *)
Formula
G.f.: (1-8x)/(1-15x+49x^2).
a(n) = Sum_{k=0..n} A165253(n,k)*7^(n-k).
a(n) = ((29-sqrt(29))*(15+sqrt(29))^n+(29+sqrt(29))*(15-sqrt(29))^n )/(58*2^n). [Klaus Brockhaus, Sep 26 2009]
Comments