cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A165336 Numbers that eventually reach a cycle under "x -> sum of cubes of digits of x" (see A055012).

Original entry on oeis.org

4, 13, 16, 22, 25, 28, 31, 40, 46, 49, 52, 55, 61, 64, 79, 82, 94, 97, 103, 106, 115, 127, 130, 133, 136, 151, 160, 163, 172, 199, 202, 205, 208, 217, 220, 229, 235, 238, 244, 250, 253, 256, 265, 271, 280, 283, 289, 292, 298, 301, 310, 313, 316, 325, 328, 331
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 17 2009

Keywords

Crossrefs

Complement of A031179.
Subsequence of A016777; a(n) mod 3 = 1;
Union of A154820, A165337, A154877, and A165339.

A154877 Numbers that eventually reach the cycle 160-217-352 under "x -> sum of cubes of digits of x" (see A055012).

Original entry on oeis.org

16, 22, 61, 79, 97, 106, 115, 127, 151, 160, 172, 202, 217, 220, 229, 235, 238, 253, 271, 283, 292, 325, 328, 352, 382, 388, 445, 454, 457, 475, 511, 523, 532, 544, 547, 574, 601, 610, 709, 712, 721, 745, 754, 790, 823, 832, 838, 883, 907, 922, 970, 1006
Offset: 1

Views

Author

Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 16 2009

Keywords

Comments

All the numbers are of the form 3n+1.
A165330(a(n)) = 160;
Subsequence of A165336.

Examples

			Taking 79 as an example; 7^3+9^3=1072, 1^3+0^3+7^3+2^3=352, 3^3+5^3+2^3=160, 1^3+6^3+0^3=217, 2^3+1^3+7^3=352.
a(15)=229: 229 -> 2*2^3+9^3=745 -> 7^3+4^3+5^3+1=532 -> 5^3+3^3+2^3=160 -> 217 -> 352 -> 160 ... .
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=MemberQ[NestList[Total[IntegerDigits[#]^3]&,n,20],160]; Select[Range[1200],okQ] (* Harvey P. Dale, Jun 20 2011 *)

Extensions

Further terms added by Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 20 2009
Corrected by Reinhard Zumkeller, Sep 17 2009.
Confirmed by Harvey P. Dale, Jun 20 2011
Entry revised by N. J. A. Sloane, Oct 13 2018 (merging older duplicate entry with this one).

A154820 Numbers whose trajectory under iteration of sum of cubes of digits eventually turns out to follow the cyclic iteration of 133, 55, 250.

Original entry on oeis.org

4, 13, 25, 28, 31, 40, 46, 52, 55, 64, 82, 103, 130, 133, 205, 208, 250, 256, 265, 280, 289, 298, 301, 310, 313, 331, 349, 394, 400, 406, 439, 448, 460, 484, 493, 502, 505, 520, 526, 550, 562, 589, 598, 604, 625, 640, 652, 679, 697, 769, 796, 802, 820, 829
Offset: 1

Views

Author

Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 15 2009

Keywords

Comments

All the numbers are of the form 3n+1.
Subsequence of A165336. - Reinhard Zumkeller, Sep 17 2009

Examples

			Taking 40 for example,
  4^3 + 0^3 = 64;
  6^3 + 4^3 = 280;
  2^3 + 8^3 + 0^3 = 520;
  5^3 + 2^3 + 0^3 = 133;
  1^3 + 3^3 + 3^3 = 55;
  5^3 + 5^3 = 250.
		

Crossrefs

Programs

  • Maple
    A055012 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,10) do a := a+d^3; od; a ; end: isA154820 := proc(n) local traj,t ; t := n ; traj := {} ; while true do if t in traj then if t in {133,55,250} then RETURN(true) ; else RETURN(false) ; fi; else traj := traj union {t} ; t := A055012(t) ; fi; od: end: for n from 1 to 1000 do if isA154820(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Jan 18 2009

Extensions

Extended by R. J. Mathar, Jan 18 2009
Edited by Charles R Greathouse IV, Aug 02 2010

A165337 Numbers that eventually reach the cycle 136-244 under "x -> sum of cubes of digits of x" (see A055012).

Original entry on oeis.org

136, 163, 244, 316, 361, 424, 442, 613, 631, 1036, 1063, 1306, 1360, 1489, 1498, 1603, 1630, 1849, 1894, 1948, 1984, 2044, 2344, 2347, 2374, 2404, 2434, 2437, 2440, 2443, 2467, 2473, 2476, 2647, 2674, 2734, 2743, 2746, 2764, 3016, 3061, 3106, 3160, 3244
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 17 2009

Keywords

Comments

A165330(a(n)) = 136;
Subsequence of A165336.

Crossrefs

Showing 1-4 of 4 results.