cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165340 Triangle read by rows: T(n,0) = smallest number m such that A165331(m)=n and A165330(m)=153; T(n,k+1) = sum of cubes of digits of T(n,k), 0<=k

Original entry on oeis.org

153, 135, 153, 18, 513, 153, 3, 27, 351, 153, 9, 729, 1080, 513, 153, 12, 9, 729, 1080, 513, 153, 33, 54, 189, 1242, 81, 513, 153, 114, 66, 432, 99, 1458, 702, 351, 153, 78, 855, 762, 567, 684, 792, 1080, 513, 153, 126, 225, 141, 66, 432, 99, 1458, 702, 351
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 17 2009

Keywords

Comments

T(n,k+1) = A055012(T(n,k)), 0 <= k < n;
A165331(T(n,k)) = n - k;
A165330(T(n,k)) = 153; T(n,n) = 153;
10^10 < T(15,0) <= 22222599999999999999999,
T(14,0) = 12558 = A055012(22222599999999999999999).

Examples

			The triangle begins:
n=0: 153,
n=1: 135 -> 1+3^3+5^3=153,
n=2: 18 -> 1+8^3=513 -> 5^3+1+3^3=153,
n=3: 3 -> 3^3=27 -> 2^3+7^3=351 -> 3^3+5^3+1=153,
n=4: 9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,
n=5: 12 -> 1+2^3=9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,
n=6: 33 -> 2*3^3=54 -> 5^3+4^3=189 -> 1+8^3+9^3=1242 -> 1+2^3+4^3+2^3=81 -> 8^3+1=513 -> 5^3+1+3^3=153.
		

Crossrefs