A227143 Hankel determinants of order n of A225439(n): a(n)=det[A225439(i+j-2)], i,j=0..n, n>=0.
1, 1, 12, 567, 122472, 126660105, 640190834712, 15987980408180508, 1985745116187976972608, 1231754497376142871049675940, 3826847477714307687323719819461000, 59670909707615018862830973519922857945375
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..52
Programs
-
Maple
with(LinearAlgebra): A225439 := proc(n) add(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1), k=0..n) end: hank0:= (i, j)-> A225439(i+j-2): a:= proc(n) Determinant(Matrix(n,n,hank0)) end: seq(a(n), n=0..10);
-
Mathematica
A225439[n_] := Sum[Binomial[k, n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1, n-1], {k, 0, n}]; a[n_] := Det[Table[A225439[i+j-2], {i, n}, {j, n}]]; a[0] = 1; Table[ a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 07 2016 *)
Formula
a(n) ~ c * (9/4)^(n^2) * n^(31/36) / 3^(n/2), where c = 2^(5/12) * exp(1/36) * Pi^(1/3) / (A^(1/3) * 3^(7/36) * Gamma(1/3)^(2/3)) = 0.774669663248120327054918681212809967565811826042305406436705141... and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019