A165361 Decimal expansion of log 2 times the negative of Granville-Soundararajan constant.
4, 5, 5, 3, 9, 7, 0, 1, 3, 9, 8, 8, 5, 5, 3, 3, 8, 6, 1, 8, 3, 6, 2, 5, 0, 2, 6, 3, 3, 7, 7, 5, 5, 6, 6, 3, 7, 5, 0, 0, 0, 2, 6, 2, 4, 2, 1, 4, 9, 3, 8, 6, 7, 0, 7, 0, 9, 7, 3, 3, 8, 8, 5, 2, 6, 1, 7, 8, 1, 9, 8, 0, 1, 2, 7, 1, 4, 9, 9, 7, 4, 9, 3, 4, 3, 1, 5, 7, 1, 0, 3, 7, 7, 9, 8, 1, 5, 9, 5, 2, 9, 7, 2, 7, 7
Offset: 0
Examples
-0.455397....
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- A. Granville and K. Soundararajan, Negative values of truncations to L(1,chi), Analytic number theory: a tribute to Gauss and Dirichlet, Clay Math. Proc. Volume 7, 2007.
- Terence Tao, A remark on partial sums involving the Mobius function, Bull. Aust. Math. Soc. 81 (2010), no. 2, 343-349.
Programs
-
Mathematica
RealDigits[ -Log[2]*(4*PolyLog[2, -Sqrt[E]] + Pi^2/3 + 1) , 10, 105] // First (* Jean-François Alcover, Feb 15 2013, after R. J. Mathar *)
-
PARI
-log(2)*(Pi^2/3+4*polylog(2, -exp(1/2))+1) \\ Charles R Greathouse IV, Jul 18 2014
-
Python
from mpmath import mp, pi, sqrt, polylog, log mp.dps=106 C = -log(2)*(4*polylog(2, -sqrt(e)) + pi**2/3 + 1) print([int(n) for n in list(str(C)[2:-1])]) # Indranil Ghosh, Jul 03 2017
Extensions
More digits from R. J. Mathar, Sep 21 2009
Comments