cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165408 An aerated Catalan triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 5, 0, 5, 0, 1, 0, 0, 0, 0, 9, 0, 6, 0, 1, 0, 0, 0, 5, 0, 14, 0, 7, 0, 1, 0, 0, 0, 0, 14, 0, 20, 0, 8, 0, 1, 0, 0, 0, 0, 0, 28, 0, 27, 0, 9, 0, 1, 0, 0, 0, 0, 14, 0, 48, 0, 35, 0, 10, 0, 1, 0, 0, 0, 0, 0, 42, 0, 75, 0, 44, 0, 11, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Aeration of A120730. Row sums are A165407.
T(n,k) is the number of lattice paths from (0,0) to (k,(n-k)/2) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}. - Alois P. Heinz, Sep 20 2022

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 1, 0, 1;
  0, 0, 2, 0,  1;
  0, 0, 0, 3,  0,  1;
  0, 0, 2, 0,  4,  0,  1;
  0, 0, 0, 5,  0,  5,  0,  1;
  0, 0, 0, 0,  9,  0,  6,  0,  1;
  0, 0, 0, 5,  0, 14,  0,  7,  0, 1;
  0, 0, 0, 0, 14,  0, 20,  0,  8, 0,  1;
  0, 0, 0, 0,  0, 28,  0, 27,  0, 9,  0, 1;
  0, 0, 0, 0, 14,  0, 48,  0, 35, 0, 10, 0, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A165408:= func< n,k | n le 3*k select Binomial(Floor((n+k)/2), k)*((3*k-n)/2 +1)*(1+(-1)^(n-k))/(2*(k+1)) else 0 >;
    [A165408(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1,
          b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0)
        end:
    T:= (n, k)-> `if`((n-k)::even, b(k, (n-k)/2), 0):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 20 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] + If[y>0, b[x, y-1], 0]], 0];
    T[n_, k_]:= If[EvenQ[n-k], b[k, (n-k)/2], 0];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* Jean-François Alcover, Oct 08 2022, after Alois P. Heinz *)
  • SageMath
    def A165408(n,k): return 0 if (n>3*k) else binomial(int((n+k)/2), k)*((3*k-n+2)/2 )*(1+(-1)^(n-k))/(2*(k+1))
    flatten([[A165408(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Nov 09 2022

Formula

T(n,k) = if(n<=3k, C((n+k)/2, k)*((3*k-n)/2 + 1)*(1 + (-1)^(n-k))/(2*(k+1)), 0).
G.f.: 1/(1-x*y-x^3*y/(1-x^3*y/(1-x^3*y/(1-x^3*y/(1-... (continued fraction).
Sum_{k=0..n} T(n, k) = A165407(n).
From G. C. Greubel, Nov 09 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = (1+(-1)^n)*A001405(n/2)/2.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1+(-1)^n)*A105523(n/2)/2.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A165407(n).
Sum_{k=0..n} 2^k*T(n, k) = A165409(n).
T(n, n-2) = A001477(n-2), n >= 2.
T(2*n, n) = (1+(-1)^n)*A174687(n/2)/2.
T(2*n, n+1) = (1-(-1)^n)*A262394(n/2)/2.
T(2*n, n-1) = (1+(-1)^n)*A236194(n/2)/2
T(3*n-2, n) = A000108(n), n >= 1. (End)