A165408 An aerated Catalan triangle.
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 5, 0, 5, 0, 1, 0, 0, 0, 0, 9, 0, 6, 0, 1, 0, 0, 0, 5, 0, 14, 0, 7, 0, 1, 0, 0, 0, 0, 14, 0, 20, 0, 8, 0, 1, 0, 0, 0, 0, 0, 28, 0, 27, 0, 9, 0, 1, 0, 0, 0, 0, 14, 0, 48, 0, 35, 0, 10, 0, 1, 0, 0, 0, 0, 0, 42, 0, 75, 0, 44, 0, 11, 0, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 1, 0, 1; 0, 0, 2, 0, 1; 0, 0, 0, 3, 0, 1; 0, 0, 2, 0, 4, 0, 1; 0, 0, 0, 5, 0, 5, 0, 1; 0, 0, 0, 0, 9, 0, 6, 0, 1; 0, 0, 0, 5, 0, 14, 0, 7, 0, 1; 0, 0, 0, 0, 14, 0, 20, 0, 8, 0, 1; 0, 0, 0, 0, 0, 28, 0, 27, 0, 9, 0, 1; 0, 0, 0, 0, 14, 0, 48, 0, 35, 0, 10, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Magma
A165408:= func< n,k | n le 3*k select Binomial(Floor((n+k)/2), k)*((3*k-n)/2 +1)*(1+(-1)^(n-k))/(2*(k+1)) else 0 >; [A165408(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 09 2022
-
Maple
b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1, b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0) end: T:= (n, k)-> `if`((n-k)::even, b(k, (n-k)/2), 0): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Sep 20 2022
-
Mathematica
b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] + If[y>0, b[x, y-1], 0]], 0]; T[n_, k_]:= If[EvenQ[n-k], b[k, (n-k)/2], 0]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* Jean-François Alcover, Oct 08 2022, after Alois P. Heinz *)
-
SageMath
def A165408(n,k): return 0 if (n>3*k) else binomial(int((n+k)/2), k)*((3*k-n+2)/2 )*(1+(-1)^(n-k))/(2*(k+1)) flatten([[A165408(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Nov 09 2022
Formula
T(n,k) = if(n<=3k, C((n+k)/2, k)*((3*k-n)/2 + 1)*(1 + (-1)^(n-k))/(2*(k+1)), 0).
G.f.: 1/(1-x*y-x^3*y/(1-x^3*y/(1-x^3*y/(1-x^3*y/(1-... (continued fraction).
Sum_{k=0..n} T(n, k) = A165407(n).
From G. C. Greubel, Nov 09 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = (1+(-1)^n)*A001405(n/2)/2.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1+(-1)^n)*A105523(n/2)/2.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A165407(n).
Sum_{k=0..n} 2^k*T(n, k) = A165409(n).
T(n, n-2) = A001477(n-2), n >= 2.
T(2*n, n) = (1+(-1)^n)*A174687(n/2)/2.
T(2*n, n+1) = (1-(-1)^n)*A262394(n/2)/2.
T(2*n, n-1) = (1+(-1)^n)*A236194(n/2)/2
T(3*n-2, n) = A000108(n), n >= 1. (End)
Comments