A165430 Table T(n,m) read by rows: the greatest common unitary divisor of n and m, n>=1, 1<=m<=n.
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 1, 5, 2, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 3, 4, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 2, 1, 1, 1, 2, 7, 1, 1, 2, 1, 1
Offset: 1
Examples
The table starts 1; 1,2 1,1,3 1,1,1,4 1,1,1,1,5 1,2,3,1,1,6 1,1,1,1,1,1,7 1,1,1,1,1,1,1,8 1,1,1,1,1,1,1,1,9 1,2,1,1,5,2,1,1,1,10
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Pentti Haukkanen, On a gcd-sum function, Aequat. Math. 76 (1-2) (2008) 168-178.
- L. Toth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009) 09.5.2, function (k,n)**.
Programs
-
Haskell
import Data.List (intersect) a165430 n k = last (a077610_row n `intersect` a077610_row k) a165430_row n = map (a165430 n) [1..n] a165430_tabl = map a165430_row [1..] -- Reinhard Zumkeller, Mar 04 2013
-
Maple
A077610 := proc(n) local a; a := {} ; for d in numtheory[divisors](n) do if gcd(d,n/d) = 1 then a := a union {d} ; fi; od: a; end: A165430 := proc(n,m) local cud ; cud := A077610(n) intersect A077610(m) ; max(op(cud)) ; end: seq(seq(A165430(n,m),m=1..n),n=1..20) ;
-
Mathematica
A077610[n_] := Module[{a = {}}, Do[If[GCD[d, n/d] == 1, a = a ~Union~ {d}], {d, Divisors[n]}]; a]; A165430[n_, m_] := Module[{cud = A077610[n] ~Intersection~ A077610[m]}, Max[cud]]; Table[Table[A165430[n, m], {m, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d);} T(n,m) = vecmax(setintersect(udivs(n), udivs(m))); \\ Michel Marcus, Oct 11 2015
Comments