cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165433 A transform of the double factorial numbers A001147.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 39, 97, 308, 897, 3139, 10304, 38997, 140893, 570002, 2230599, 9567979, 40091222, 181203603, 805962157, 3819522284, 17912075229, 88646095447, 435959031488, 2245454002137, 11530035000169, 61627679281154
Offset: 0

Views

Author

Paul Barry, Sep 18 2009

Keywords

Comments

Hankel transform is A000178.

Programs

  • Magma
    [(&+[Binomial(n-k,k)*Factorial(2*k)/(Factorial(k)*2^k): k in [0.. Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 20 2018
  • Maple
    a:=proc(n) add(binomial(n-k,k)*factorial(2*k)/(factorial(k)*2^k),k=0..floor(n/2)) end proc: seq(a(n),n=0..30); # Muniru A Asiru, Oct 20 2018
  • Mathematica
    Table[Sum[Binomial[n-k, k]*(2*k)!/(k!*2^k), {k, 0, Floor[n/2]}], {n,0, 30}] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    vector(30, n, n--; sum(k=0, floor(n/2), binomial(n-k,k)*(2*k)!/(k!*2^k))) \\ G. C. Greubel, Oct 20 2018
    

Formula

G.f.: 1/(1-x-x^2-2x^4/(1-x-5x^2-12x^4/(1-x-9x^2-30x^4/(1-x-13x^2-56x^4/(1-.... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(2k)!/(k!*2^k).
Conjecture: 2*a(n) -3*a(n-1) +(3-2*n)*a(n-2) +(2*n-3)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
a(n) ~ 2^(-1/2) * exp(sqrt(n)/2 - n/2 + 1/16) * n^(n/2) * (1 + 121/(192*sqrt(n))). - Vaclav Kotesovec, Apr 18 2024