cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165441 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.

Original entry on oeis.org

1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1

Views

Author

Paul Curtz, Sep 19 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			.1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
.4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
.9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Programs

  • Maple
    T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
    seq(seq(T(k, d-k), k=1..d-1), d=2..12);
  • Mathematica
    T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
    Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)

Formula

T(n,k) = A165727(n,k).

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010