cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165507 Triangle T(n,m) read by rows: numerator of 1/(1+n-m)^2 - 1/m^2.

Original entry on oeis.org

0, -3, 3, -8, 0, 8, -15, -5, 5, 15, -24, -3, 0, 3, 24, -35, -21, -7, 7, 21, 35, -48, -2, -16, 0, 16, 2, 48, -63, -45, -1, -9, 9, 1, 45, 63, -80, -15, -40, -5, 0, 5, 40, 15, 80, -99, -77, -55, -33, -11, 11, 33, 55, 77, 99, -120, -6, -8, -3, -24, 0, 24, 3, 8, 6, 120
Offset: 1

Views

Author

Paul Curtz, Sep 21 2009

Keywords

Comments

The triangle is obtained from the infinite array shown in the comment in A172370 by starting in column 1 and reading diagonally upwards along increasing columns or starting in column -1 and reading diagonally upwards along decreasing columns.
Equivalence of these two interpretations follows from the mirror symmetry m <-> -m along column m=0 in that array.
T(n,m) is antisymmetric (changes sign) with respect to a central zero if the row index n is odd, and with respect to the separator in the middle of the row if the row index n is even: T(n,m) = -T(n,n+1-m).
An appropriate triangle of denominators is in A143183.

Examples

			The triangle starts in row n=1 with columns 1<=m<=n as
0;
-3,3;
-8,0,8;
-15,-5,5,15;
-24,-3,0,3,24;
-35,-21,-7,7,21,35;
-48,-2,-16,0,16,2,48;
		

Crossrefs

Programs

  • Magma
    [[Numerator(1/(n-k+1)^2 - 1/k^2): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 21 2018
  • Maple
    A165507 := proc(n,m) 1/(1+n-m)^2-1/m^2 ; numer(%) ; end proc:
  • Mathematica
    Table[Numerator[1/(n-k+1)^2 - 1/k^2], {n,1,15}, {k,1,n}]//Flatten (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    for(n=1, 15, for(k=1, n, print1(numerator(1/(n-k+1)^2 - 1/k^2), ", "))) \\ G. C. Greubel, Oct 21 2018
    

Formula

T(n,m) = A173651(1+n,m), m>=1.

A165727 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0

Views

Author

Paul Curtz, Sep 25 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			0,  0,   0,   0,    0,    0,    0,    0,    0,    0, ... A000004
0,  1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
0,  4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
0,  9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
0, 16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
0, 25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
0, 36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
0, 49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
0, 64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
0, 81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Crossrefs

Cf. A165441 (top row and left column removed)

Programs

  • Maple
    T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
    seq (seq (T (k, d-k), k=0..d), d=0..11);

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010

A174413 Triangle T(n,m) with the denominator of 1/(n-m)^2-1/n^2, read by rows, 1<=m

Original entry on oeis.org

4, 36, 9, 144, 16, 16, 400, 225, 100, 25, 900, 144, 12, 9, 36, 1764, 1225, 784, 441, 196, 49, 3136, 576, 1600, 64, 576, 64, 64, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 12100, 9801, 7744, 5929, 4356, 3025, 1936, 1089, 484, 121
Offset: 2

Views

Author

Paul Curtz, Mar 19 2010

Keywords

Comments

Obtained by deleting the last entry in each row of A061036 or by reversing rows in A120073.

Examples

			Triangle T(n,m) begins:
     4,
    36,    9,
   144,   16,   16,
   400,  225,  100,  25,
   900,  144,   12,   9,  36,
  1764, 1225,  784, 441, 196, 49,
  3136,  576, 1600,  64, 576, 64, 64,
		

Crossrefs

Cf. A165441, A172370 (numerators).

Programs

  • Maple
    A174413 := proc(n,m) 1/(n-m)^2-1/n^2 ; denom(%) ; end proc:
    seq(seq(A174413(n, k), k=1..n-1), n=2..11); # R. J. Mathar, Jan 27 2011
  • Mathematica
    T[n_, m_] := Denominator[1/(n - m)^2 - 1/n^2];
    Table[T[n, m], {n, 2, 11}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, May 18 2018 *)
Showing 1-3 of 3 results.