cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165453 Linear interpolation of the sequence that maps an entry of A002378 to the corresponding entry of A006331.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 288, 296, 304
Offset: 0

Views

Author

Friedrich Regen (friedrich.regen(AT)tu-ilmenau.de), Sep 20 2009

Keywords

Crossrefs

Partial sums of A000194.

Programs

  • Mathematica
    f[n_]:=Round[Sqrt[n]]; a=0;lst={};Do[AppendTo[lst,a+=f[n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *)
    Table[Sum[Floor[Sqrt[n + 1 - k] + 1/2], {k, n + 1}], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 01 2020 *)
  • Python
    from math import isqrt
    def A165453(n): return (k:=(m:=isqrt(n))+(n-m*(m+1)>=1))*(3*n+1-k**2)//3 # Chai Wah Wu, Jun 19 2024

Formula

a(0)=0, a(n) = max(min(a(n-1)+x, n+a(n-x))), where the maximum is taken over all values for x from 1 to n.
a(n) = Sum_{k=1..n} floor(sqrt(k)+1/2). - Wesley Ivan Hurt, Dec 01 2020
a(n) = (1/3)*t*(3*n + 1 - t^2), where t = floor(sqrt(n)+1/2). - Ridouane Oudra, Feb 22 2021