A165453 Linear interpolation of the sequence that maps an entry of A002378 to the corresponding entry of A006331.
0, 1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 288, 296, 304
Offset: 0
Programs
-
Mathematica
f[n_]:=Round[Sqrt[n]]; a=0;lst={};Do[AppendTo[lst,a+=f[n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *) Table[Sum[Floor[Sqrt[n + 1 - k] + 1/2], {k, n + 1}], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 01 2020 *)
-
Python
from math import isqrt def A165453(n): return (k:=(m:=isqrt(n))+(n-m*(m+1)>=1))*(3*n+1-k**2)//3 # Chai Wah Wu, Jun 19 2024
Formula
a(0)=0, a(n) = max(min(a(n-1)+x, n+a(n-x))), where the maximum is taken over all values for x from 1 to n.
a(n) = Sum_{k=1..n} floor(sqrt(k)+1/2). - Wesley Ivan Hurt, Dec 01 2020
a(n) = (1/3)*t*(3*n + 1 - t^2), where t = floor(sqrt(n)+1/2). - Ridouane Oudra, Feb 22 2021