cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165512 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951338, 306775222626096, 8589706233212790, 240511774521056976, 6734329686340363296, 188561231210551675392, 5279714473700048997888
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951338];; for n in [10..20] do a[n]:=27*Sum([1..8], j-> a[n-j]) -378*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10) )); // G. C. Greubel, Oct 21 2018
    
  • Maple
    seq(coeff(series((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 16 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10), {t,0, 20}], t] (* G. C. Greubel, Oct 21 2018 *)
    coxG[{9, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10)) \\ G. C. Greubel, Oct 21 2018
    
  • Sage
    def A165512_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10)).list()
    A165512_list(20) # G. C. Greubel, Sep 16 2019
    

Formula

G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).