A165515 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388395, 435214379250840, 12621216997908960, 366015292928763240, 10614443494626832560, 307818861335266403640, 8926746978464285228160
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..682
- Index entries for linear recurrences with constant coefficients, signature (28,28,28,28,28,28,28,28,-406).
Programs
-
GAP
a:=[30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388395];; for n in [10..20] do a[n]:=28*Sum([1..8], j-> a[n-j]) -406*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10) )); // G. C. Greubel, Oct 21 2018 -
Maple
seq(coeff(series((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 16 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), {t,0,20}], t] (* G. C. Greubel, Oct 21 2018 *) coxG[{9, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *) -
PARI
my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)) \\ G. C. Greubel, Oct 21 2018 -
Sage
def A165515_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)).list() A165515_list(20) # G. C. Greubel, Sep 16 2019
Formula
G.f.: (t^9 +2*t^8 +2*t^7 +2*t^6 +2*t^5 +2*t^4 +2*t^3 +2*t^2 +2*t +1)/( 406*t^9 -28*t^8 -28*t^7 -28*t^6 -28*t^5 -28*t^4 -28*t^3 -28*t^2 -28*t + 1).
Comments