A238008 Numbers n such that n*(n+3)*(n+6) is a triangular number.
-5, -3, 0, 1, 10, 12, 22, 159, 639, 651, 2629
Offset: 1
Examples
1 is in the sequence because 1*4*7=28 is a triangular number.
Programs
-
PARI
istriang(n)=issquare(8*n+1); isok(n)=istriang( n*(n+3)*(n+6) ); for (n=-10^6, 10^6, if ( isok(n), print1(n,", ") ) ); \\ Joerg Arndt, Feb 17 2014
-
PARI
isok(n) = ispolygonal((n-1)*n*(n+1), 3); \\ Michel Marcus, Mar 05 2014
-
Sage
# for the curve y^2 + b1*x*y + b3*y = x^3 + b2*x^2 + b4*x + b5, use # EllipticCurve([b1,b2, b3,b4,b5]) # we have y^2 + 2*y == x^3 + 18*x^2 + 72*x + 0, so need E=EllipticCurve([0, 18, 2, 72, 0]) E.integral_points() ## Joerg Arndt, Feb 27 2014
Extensions
Added the negative terms, Joerg Arndt, Feb 27 2014
Comments