cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165522 The number of 54321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 368, 1488, 5831, 22311, 84223, 316181, 1185884, 4452567, 16742230, 63025805, 237423928, 894681874, 3371727204, 12706639594, 47884046357, 180440982667, 679939553548, 2562134671440, 9654584875285, 36380338185856, 137088669193146
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; 368 of them avoid 54321.
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12 -11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5 +2564*x^4-743*x^3+148*x^2-18*x+1))); // G. C. Greubel, Oct 21 2018
  • Mathematica
    CoefficientList[Series[(1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2-18*x+1), {x,0,50}], x] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2 -28*x^3+23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16 -273*x^15 +957*x^14 -2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9 +22992*x^8 -18999*x^7+12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2 -18*x+1)) \\ G. C. Greubel, Oct 21 2018
    

Formula

G.f.: (1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3+23*x^4 -12*x^5 +4*x^6-x^7) / (x^18 -10*x^17 +61*x^16 -273*x^15 +957*x^14 -2697*x^13 +6189*x^12 -11622*x^11 +17876*x^10 -22474*x^9 +22992*x^8 -18999*x^7 +12536*x^6 -6488*x^5 +2564*x^4 -743*x^3 +148*x^2 -18*x +1). [typo fixed by Colin Barker, Jul 05 2013]
The growth rate (limit of the n-th root of a(n)) is approximately 3.76823.